The University of Western Australia SCHOOL OF MATHEMATICS AND STATISTICS

BLAKERS MATHEMATICS COMPETITION

1996 Problems

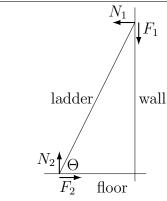
1. Let

3.

$$f(x) = \sum_{k=1}^{n} \frac{k}{x-k}$$

Show that the set of real numbers x for which $f(x) \ge 1$ is a union of disjoint intervals with total length $\frac{1}{2}n(n+1)$.

- **2.** Given $f_1(x) = \frac{2x-1}{x+1}$ for $x \neq -1$, define $f_{n+1}(x) = f_1(f_n(x))$ for $n = 1, 2, 3, \ldots$
 - (a) Show that $f_{35}(x) = f_5(x)$.
 - (b) Determine $f_{28}(x)$.



A ladder, modelled as a rigid rod of length 2a and weight W, leans against a vertical wall at an angle Θ as shown. The reaction forces on the ladder due to the wall and floor are given in terms of components (F_1, N_1) and (F_2, N_2) , and the coefficients of friction due to the wall and floor are μ_1 and μ_2 respectively. When the ladder is at rest, $F_i \leq \mu_i N_i$ for i = 1, 2, with equality for either *i* only if the point of contact is on the verge of slipping.

- (a) Show that if $\mu_1\mu_2 > 1$ then the ladder is in equilibrium at any angle Θ , but that N_1 and N_2 are not uniquely determined.
- (b) Show that if $\mu_1\mu_2 < 1$ then there is a critical angle Θ_c such that if $\Theta < \Theta_c$ the ladder cannot be in equilibrium.
- (c) Find Θ_c as a function of μ_1 and μ_2 .
- 4. A fair coin is tossed n times. What is the expected value of |H T|, where H is the number of heads and T is the number of tails?
- **5.** Construct an example of a two-to-one function $f : [0,1] \longrightarrow \mathbb{R}$; that is, for each $y \in \mathbb{R}$, the set $\{x \in [0,1] : f(x) = y\}$ has exactly two elements or is empty. Show that no two-to-one function $f : [0,1] \longrightarrow \mathbb{R}$ is continuous on [0,1].

- *6. Find all polynomials p(x) such that p(x) is an integer if and only if x is an integer.
- *7. Prove that the integers $\lfloor (\sqrt{2}+1)^n \rfloor$ are alternately even and odd. (Note that $\lfloor x \rfloor$ is the largest integer $\leq x$.)
- ***8.** Let \boldsymbol{v} , \boldsymbol{u} and \boldsymbol{w} be elements of the Euclidean plane \mathbb{R}^2 . Show:

(a)
$$\|\boldsymbol{u} - \boldsymbol{v}\| + \|\boldsymbol{v} - \boldsymbol{w}\| + \|\boldsymbol{w} - \boldsymbol{u}\| \le 2\|\boldsymbol{u}\| + 2\|\boldsymbol{v}\| + 2\|\boldsymbol{w}\| \le 3\|\boldsymbol{u} + \boldsymbol{v}\| + 3\|\boldsymbol{v} + \boldsymbol{w}\| + 3\|\boldsymbol{w} + \boldsymbol{u}\|,$$

(b) $\|\boldsymbol{u}\| \|\boldsymbol{v} - \boldsymbol{w}\| \le \|\boldsymbol{v}\| \|\boldsymbol{w} - \boldsymbol{u}\| + \|\boldsymbol{w}\| \|\boldsymbol{u} - \boldsymbol{v}\|.$

***9.** Define a sequence of positive integers by:

$$a(1) = a(2) = 1, \ a(n) = a(a(n-1)) + a(n-a(n-1))$$
for $n \ge 3$

Prove that $a(2^n) = 2^{n-1}$ for all positive integers n.

*10. Let f(x) be a continuously differentiable function of a real variable x (i.e. f is differentiable on \mathbb{R} and f' is continuous on \mathbb{R} .) Let

$$\lim_{x \to \infty} \left(\left(f'(x) \right)^2 + \left(f(x) \right)^3 \right) = 0.$$

Show that $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} f'(x) = 0$.