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1. A recursively defined function. Define f : R→ R by

f(x) = x2 + 1 for − 1 < x ≤ 1 and f(x+ 2) = 1/f(x) for all x ∈ R.

Sketch the graph of f(x), find the period, and find an explicit formula for f(x) in the interval
(1, 3].

Solution. Firstly,

f(x+ 4) = f(x+ 2 + 2) =
1

f(x+ 2)
=

1
1/f(x)

= f(x).

Hence f is periodic, with period 4.
Now for x ∈ (1, 3],

f(x) = f(x− 2 + 2) =
1

f(x− 2)

=
1

(x− 2)2 + 1
.

−1 0 1 2 3
x

0.5

1.0

1.5

2.0

y

. .............. ................. ...................
.....................

.
...................

......
.

..................
..........

..................
......

...................
..

................. .............

.

...........
...........
...........
....

...........
...........
...........

............
............
......

............
............

...

.............
...........
.

..............
........

.................
....

.................... ................... ................. . .................. ...................
....................

.....................

......................

.
........................

............................

...............................

...................................

......................................

..........
............
...............

..................
.....................

........................

.
.......................

.....................
...................

................ .............. . .............. ................. ...................
.....................

.
...................

......
.

..................
..........

..................
......

...................
..

................. .............

.

...........
...........
...........
....

...........
...........
...........

............
............
......

............
............

...

.............
...........
.

..............
........

.................
....

.................... ................... .................

2. Suppose ẍ− x ≤ 0, x(0) = 1, ẋ(0) = 1.

Prove that x(t) ≤ et for all t ∈ [0,∞).

Is the converse true?

[ẋ means
dx

dt
and ẍ means

d2x

dt2
.]



Solution. We infer from the existence of ẍ on [0,∞) that ẋ and therefore x also are contin-
uous on [0,∞).

d

dt

(
(ẋ− x) et

)
= (ẍ− x) et + (ẋ− x) et

= (ẍ− x) et

≤ 0.

So, (ẋ− x) et is a non-increasing function on [0,∞). Hence, for t ≥ 0,

(ẋ− x) et ≤
(
ẋ(0)− x(0)

)
e0 = 0

=⇒ ẋ− x ≤ 0
=⇒ (ẋ− x) e−t ≤ 0

=⇒ d

dt

(
xe−t

)
≤ 0

=⇒ xe−t ≤ x(0) e−0 = 1
=⇒ x(t) ≤ et.

Alternatively, ẍ−x ≤ 0 implies ẍ−x = f(t) for some f(t) ≤ 0. Taking Laplace transforms,
we have: (

s2X(s)− s− 1
)
−X(s) = F (s)

=⇒ X(s) =
1

s− 1
+

F (s)
s2 − 1

.

Hence x(t) = et +
∫ t
0 f(u) sinh(t− u) du, by the Convolution Theorem.

For 0 ≤ u ≤ t, sinh(t−u) ≥ 0 and f(u) ≤ 0. Hence the integrand is ≤ 0, so that the integral
is ≤ 0. Thus, x ≤ et.

The converse is false: let x(t) = et cos t. Then

ẍ− x = −et(2 sin t+ cos t).

So we have x(0) = ẋ(0) = 1 and x(t) ≤ et but ẍ(π)− x(π) = eπ 6≤ 0.

3. Three-dimensional geometry. L and M are skew lines in space such that L is parallel
to a line perpendicular to M . A line segment PQ of fixed length moves so that P is on L
and Q is on M . What is the locus of the mid-point of PQ?

Solution. Let c be the distance between L and M and set up the coordinates so that the
origin is the midpoint of the shortest line segment between L and M with the x-axis above
L and the y-axis below M . Then the coordinates of P and Q are of the form P (a, 0,−c/2)
and Q(0, b, c/2); so the midpoint is R(a/2, b/2, 0). Let d be the distance between P and Q.
Then a2 + b2 = d2 − c2; so the locus of midpoints is the circle

x2 + y2 =
d2 − c2

4
.
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4. Constructing the Great Pyramid. A recent theory to explain how the 2.5 tonne stone
blocks forming the Great Pyramid of Egypt were moved suggested that cradles, shaped as
arcs of a circle were attached to the blocks, effectively making them cylinders.

Long ropes were then coiled round the cylinder. As the slaves pulled on the ropes, the ropes
unwound and the blocks were rolled up ramps believed to have a slope of one-in-four.

In a modern test simulating the conditions, it was found that 3 men were able to roll the
cradled stone on level ground while 20 men were able to roll the stone up the ramp.

How many men would be required to just prevent the block and cradle rolling down the
ramp?

Estimate the average pull exerted by each man to roll the stone up the ramp, and decide
whether the suggested method is feasible.

Solution. Since any motion will be slow, it is reasonable to ignore acceleration, so the
following simplified model considers static equilibrium of forces.
Let M kg weight = 9.8 Newtons be the pull exerted by one man. Let F be the frictional force,
and W the weight force. Then on level ground

F = 3M.

When pulling up the slope, 20M balances the component of the weight force parallel to the
plane and the friction force.

W sinα+ F = 20M

=⇒ M =
W sinα

17

≈ 2500
6× 17

kg weight

≈ 37 kg weight
≈ 360 Newtons.

Let n be the number of men required to hold against motion down the plane. Then nM and
the friction force balances the weight components.

nM + F = W sinα =⇒ n = 14.

It does seem feasible that a man can exert a pull of 37 kg weight.

5. Random Queen Moves. If two queens are randomly placed on distinct squares of an
ordinary chessboard, what is the probability that they attack each other?

Solution. Let (a, b) and (x, y) be the squares occupied by the two queens. The queens attack
each other if and only if:
(i) a = x, or

(ii) b = y, or
(iii) a+ b = x+ y, or
(iv) a− b = x− y,
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and only one of these conditions can hold.
For each of (i) or (ii) there are 8 × 8× 7 = 448 possible attacking positions, and for each of
(iii) and (iv) there are

2
7∑
r=1

r(r − 1) + 8(8− 1) = 2× 112 + 56 = 280 positions.

Hence the total number of pairs of attacking positions is 1456 out of a total number 64× 63
of pairs of positions.
So the required probability is s

1456
64
× 63 =

13
36
.

6. Two nice limits. Let An and Gn be respectively the arithmetic and geometric mean of the
n positive integers n+ 1, n+ 2, . . . , n+ n. Find the limits as n→∞ of An/n and Gn/n.
[Hint. For Gn think Riemann integral.]

Solution. [Gn/n limit by Justin Foo]
Firstly,

An =
1
n

(
(2n/2)(2n+ 1)− (n/2)(n+ 1)

)
=

3n+ 1
2

∴
An
n

=
3 + 1/n

2
→ 3

2
as n→∞

Now, Gnn = (n+ 1)(n+ 2) . . . (2n). So

Gn = exp
( 1
n

n∑
i=1

ln(n+ i)
)
.

The expression
∑n

i=1 ln(n + i) is a Riemann sum for lnx over the interval [n, 2n] so in the
limit, as n→∞,

1
n

(
n∑
i=1

ln(n+ i)

)
→
∫ 2n

n

lnx
n

dx =
1
n

[
x(lnx− 1)

]2n
n

= lnn+ 2 ln 2− 1 = ln
(4n
e

)
.

Thus
∑n

i=1 ln(n+ i)/n = ln(4n/e) + k where k → 0 as n→∞. So

lim
n→∞

Gn
n

= lim
n→∞

exp
(
ln(4n/e) + k

)
n

= lim
n→∞

ek4n/e
n

=
4
e

since ek → 1 as n→∞.
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7. Linear Independence. Let V be the vector space of real valued functions on
(
−π

2
,
π

2

)
.

(a) Prove that the four functions sinx, cos x, tan x and sec x are linearly independent.

(b) Let W be the span of the four functions sin x, cosx, tanx and secx. Let T : W −→ V be
the linear transformation defined on the basis elements by T (sinx) = sin2 x, T (cosx) =
cos2 x, T (tanx) = tan2 x and T (secx) = sec2 x. Find a basis for the kernel of T .

Solution. [Part (b) by Justin Foo]
(a) If a sinx+ b cosx+ c tanx+ d secx = 0 for all x ∈ (−π

2 ,
π
2 ), then (with x = 0), b = −d;

so, (with x→ π/2), a = 0 and c+ d = 0. Hence, (with x = π/4), b/
√

2 + c+ d/
√

2 = 0.
Hence a = b = c = d = 0. Thus, since the only linear combination of sinx, cosx, tanx
and secx that is identically zero, is the trivial one, sinx, cosx, tanx and secx are linearly
independent.

(b) Note that sec2 x = 1+tan2 x = sin2 x+cos2 x+tan2 x. Hence sinx+cosx+tanx− secx
is in the kernel of T . On the other hand, using in turn x = π/3, x = π/4 and x = π/6,
we see that {sin2 x, cos2 x, tan2 x} is linearly independent. Hence kerT has dimension 1
and basis {sinx+ cosx+ tanx− secx}.

8. A continuous non-differentiable function. Define f : (0, 1)→ (0, 1) as follows:

For each x ∈ (0, 1), write x in decimal notation 0.x1x2 . . . where the xi ∈
{0, 1, . . . 9} and the representation does not end in all 9s. Let f(x) = y be the
decimal obtained from x by changing each 1 to 2 and each 2 to 1.

Show that f is continuous on (0, 1),
∫ 1

0
f(x) dx = 1/2 and f is not differentiable anywhere

on (0, 1).

Solution. Let a = 0.a1a2 . . . ∈ (0, 1).
For any m and 0.a1a2 . . . am ≤ x < a1a2 . . . am999 . . . , f(x) agrees with f(a) in the first m
digits; so |f(x) − f(a)| ≤ 10−m. Therefore f is continuous from the right at a. The same
inference is valid from the left, unless a = 0.a1a2 . . . an, but then for sufficiently large m we
can apply the same argument.
Now note that the integral exists since f is continuous and bounded. Partition the interval
into 10n equal parts and use the values of f at the left endpoints. The Riemann Sum is a
re-ordered sum for

∫ 1
0 x dx = 1/2.

Assume f is differentiable at some a = 0.a1a2 . . .. Let d be any digit that appears infinitely
many times. Let xi,n be the number obtained by replacing the nth occurrence of d by i, i = 1, 2.
Thus xi,n → a as n→∞. The quotient

f(xi,n)− f(a)
xi,n − a

is constant. The limits of the quotients must be the same for both choices of i. But one
has denominator 1 and another −1, a contradiction. Thus, f is not differentiable for any
a ∈ (0, 1).
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9. Similar matrices. Real n × n matrices A and B are called real similar if there is an
invertible real matrix S such that S−1AS = B and complex similar if there is an invertible
complex matrix T such that T−1AT = B. Prove that if A and B are complex similar then
they are real similar.

Solution. Let T−1AT = B for a complex matrix T . There are real matrices P and Q such
that T = P + iQ.
Then A(P + iQ) = (P + iQ)B, so AP = PB and AQ = QB. If P or Q are non-singular we
are done. Suppose they are both singular.
The polynomial p(x) = det(P +xQ) is not the zero polynomial since p(i) = detT 6= 0. Hence
there is a real number r such that p(r) 6= 0. Hence P + rQ is a real nonsingular matrix such
that A(P + rQ) = (P + rQ)B.

10. An inequality.

(a) Let x and y be positive real numbers. Prove that xy + yx ≥ 1.

(b) Let x, y and z be positive real numbers. Prove that xy + yz + zx ≥ 1.

Solution.
(a) First note that if f(x) = xx then f ′(x) = xx(log x+ 1) so f has a unique turning point

at x = 1/e and f(1/e) = e−1/e = A say (A ≈ 0.69). Since f(1) = 1 and limx→0+ = 1,
this is a minimum.
The inequality is certainly true if x or y ≥ 1, so we may assume 0 < y < x < 1. Put
y = kx for some k < 1. Let F (x) = xy + yx = xkx + (kx)x = (xx)k + kxxx.
Since k < 1 and x < 1, kx > k so F (x) ≥ Ak + kA. Now Ak + kA (as a function of k)
has a unique minimum at k = 1− e and is increasing for 0 < k < 1. Hence the minimum
value of Ak + kA is 1, when k = 0. Hence F (x) > 1.

(b) We can assume x ≤ y ≤ z; so S ≥ xy + yz ≥ xy + yx ≥ 1.

11. An abstract operation. Let ∗ be an operation on a set S, i.e. for all a and b ∈ S, a ∗ b is
an element of S. Call e ∈ S a near identity if e ∗ e = e and e ∗ x = x ∗ e = x fails for at
most one x ∈ S.

(a) Show that if ∗ is associative then S has at most two near identities.

(b) Give an example of a finite set S and an operation ∗ such that ∗ is associative and S
has two near identities.

(c) Give an example of an infinite set S and an operation ∗ such that ∗ is associative and
S has two near identities.

Solution. [Part (b), (c) examples by Justin Foo]
(a) Say that e works for x if e2 = e and ex = xe = x. If e and f are distinct near identities

then it cannot be that each works for the other, since in that case, e = fe = ef = f .
Assume that S has 3 distinct near identities, e, f and g. Then each must work for at
least one of the other two, e works for f . Then f must work for g and g for e. But then
e = eg = e(gf) = (eg)f = ef = f .
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(b) For a finite example, take

S =
{[

0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]}
under ordinary matrix multiplication.

(c) For an infinite example, take

S =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
x y
x y

]
: x, y ∈ R

}
under ordinary matrix multiplication.
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