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Problems and Solutions

1. An interesting sequence
For n ≥ 1, define

Hn =
1

n
+

1

n+ 3
+

1

n+ 6
+ · · ·+ 1

n+ 3(n− 1)

Prove that {Hn} converges and find its limit. [Hint: Consider Riemann
sums.]

Solution (Shane Kelly, 2nd year, UWA)

Consider the function f(x) =
1

1 + 3x
An upper Riemann sum for f(x) over [0, 1] with interval size 1/n is
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=
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n
Hence

limn→∞
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∫ 1
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1 + 3x
dx =

ln 4

3
,

so limn→∞Hn =
ln 4

3
.

2. Range of a polynomial

What are all the possible values of solutions to x2 + px+ q = 0, where
p and q can take on any values in the interval [−1, 1]?

Solution (Shreya Bhattarai, 2nd Year, UWA)
By the fundamental theorem of algebra, x2 + px+ q = (x− z)(x− w)
where z, w ∈ C. Since the cofficients p, q ∈ R, z and w have complex
part conjugate, say z = a+ bi and w = c− bi.
Then p = a + c ∈ [−1, 1] and q = ac − b2 ∈ [−1, 1]. Furthermore,
by continuity of polynomials and the Intermediate Value Theorem, all
values satisfying these bounds can be attained.
Case 1 b = 0: We need the values of a for which a + c ∈ [−1, 1] and
ac ∈ [−1, 1] for some c. Note that for c = 0, any a ∈ [−1, 1] satisfies
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these inequalities, and if (a, c) satisfies them, so does (−a,−c). Hence
for a maximum value of a, we only need consider a > 1.
If a is any solution, then c ∈ [−a−1,−a+1] so ac ∈ [−a(a+1),−a(a−
1)]. Hence the maximum value of a occurs at −a2 + a = −1 so a =
1 +
√

5

2
. By symmetry, the minimum is

−1−
√

5

2
so the range is |a| ≤

1 +
√

5

2
.

Case 2 b 6= 0 The solutions of the quadratic are complex conjugates, so
a = c and we have p = 2a ∈ [−1, 1] and a2 + b2 ∈ [−1, 1]. The solution
of this system is the region of the complex plane inside the unit disc
between the verticals Re(z) = −1

2
and Re(z) = 1

2
, (not including the

real axis).
Hence the range of the polynomial is shown in the diagram:

3. Dogs chasing each other
On a horizontal plane, n dogs D1, D2, . . . , Dn of equal mass are stand-
ing with their centres of mass at points P1, P2, . . . , Pn. Initially, D1

is facing D2, D2 is facing D3,. . .Dn is facing D1. Every dog turns
through angle θ to its left. Then for some fixed positive real number
k, D1 moves forward a distance k|P1P2|; D2 moves forward a distance
k|P2P3|; . . . Dn moves forward a distance k|PnP1|, where |P1P2| denotes
the distance from P1 to P2.
Prove that after all the dogs have moved, their centre of mass is at the
same point it was initially.

Solution (Michael Pauley, 2nd Year, UWA)



We are trying to prove that

1

n

n∑
i=1

k rotθ(Pi − Pi−1) = 0,

that is, the displacement vector of the centre of mass is zero. Since
initially the dogs form a closed circle we can assume

n∑
i=1

(Pi − Pi−1) = 0,

where P0 means Pn.
Since rotation and scaling fix the zero vector,

krotθ

n∑
i=1

(Pi − Pi−1) =
n∑
i=1

krotθ(Pi − Pi−1) = 0,

so
1

n

∑n
i=1 krotθ(Pi−Pi−1) = 0, so the centre of mass does not change.



4. Logical paradox

A well–known logical joke is a card saying on one side ”The statement
on the other side is false” and on the other, ”The statement on the
other side is true”. Clearly, it is impossible for either of the statements
to be true or false without leading to an inconsistency. However, if
both sides said ”The statement on the other side is false” or ”The
statement on the other side is true”, it is possible for these statements
to be logically consistent.
Now suppose you are given a stack of n cards, each of which says either
”The statement on the next card is false” or ”The statement on the
next card is true”. Is it possible to arrange the cards into an order
which makes the whole pack logically consistent?

Solution
We assume that the last card in an arrangement refers to the first
card. We are going to show that regardless of the order, the cards can
be logically consistent if and only if the number of cards which state
that the next card is false is even.
Suppose we have the deck of cards together with some consistent as-
signment of truth value to each card. Label each card by T if it says
that the statement on the next card is true, and by F if it says that
the statement on the next card is false. Also label each card by t if it
is true, and by f if it is false. Thus each card has one of the labels Tt,
Tf, Ft, or Ff.
We first show that any card labelled T can be removed from the deck
without altering the remaining labels. If it is labelled Tt, the preceding
card must be either Tt or Ff and the next card must be either Tt or
Ft. Thus removing the given Tt card does not change anything in the
rest. If it is labelled Tf, then the preceding card must be labelled Tf or
Ft and next card must be either Ft or Ff. Once again, removing the
given Tf card does not change the rest.
Hence we now assume that the remaining cards are all labelled Ft or
Ff. Next we show that removing a pair of adjacent F cards does not
alter the remaining labels. First note that a pair (Ft, Ft) cannot be
consistent, since Ft truthfully claims that the statement on the next
card is false. Similarly, (Ff, Ff) cannot be consistent, since Ff falsely
claims that the statement on the next card is false, so that statement
must be true. Hence any adjacent pair must be (Ft, Ff), in which case
the preceding card is Ff and the next card is Ft; or (Ff, Ft) in which
case the preceding card is Ft and the next card is Ff. In both cases,
the pair can be removed.



Thus we finally reach a pair (Ft, Ff) or (Ff, Ft) which are consistent, or
a single Ft or Ff which corresponds to ‘The statement on the other side
is false’ which is inconsistent, a contradiction. Hence the original deck
was consistent if there are an even number of F cards, and inconsistent
if there are an odd number.

5. Average distance

Let [0, 1] be be the unit interval. If X = {x1, x2, . . . , xn} is an n–tuple
of points in [0, 1] and t is any point in [0, 1], the average distance

D(t, X) from t to X is defined to be
1

n

n∑
1

|t− xi|.

Prove that for any choice of n > 1 and X in [0, 1], there exists t ∈ [0, 1]

such that D(t,X) =
1

2
. Show also that

1

2
is the only distance for which

this result is true.

Now show that if [0, 1] is replaced by an equilateral triangle of side 1,
and all distances are measured along the sides of the triangle, then the

same results are true with
1

2
replaced by

2 +
√

3

6
.

(Apologies from the setters. The second part should have stated that
the n–tuple of points lie on the sides of an equilateral triangle, but the
distances measured are ordinary Euclidean distances in the plane)

Solution (Michael Pauley, 2nd Year, UWA)
Since all the numbers in X lie betrween 0 and 1, so does their average,
A. If A ≤ 1

2
, then the average of {(1 − xi)} ≥ 1

2
and vice versa. So

either D(0, X) ≤ 1
2

and D(1, X) ≥ 1
2

or vice versa. Since D(t,X) is
a continuous function of t, by the Intermediate Value Theorem there
exists t such that D(t,X) = 1

2
.

To see that 1
2

is the only possibility for all choices of X, let X = {0, 1};
in this case D(t,X) = 1

2
for all t ∈ [0, 1].

When we replace the interval by an equilateral triangle of side 1, the
average distance function is still continuous. Taking X to be the three

vertices and the three side midpoints, we see that D(t,X) ≤ 2 +
√

3

6

at some point and D(t,X) ≥ 2 +
√

3

6
at some point, and hence by the

IVT attains this value at some t.



To see that this is the only possibility, for any d 6= 2 +
√

3

6
, place

enough points t regularly around the triangle so that the average dis-
tance D(t,X) 6= d.

6. Coin toss
Two fair coins are tossed simultaneously until at least one of the two
shows a head. If only one of the two is a head, the other is tossed until
it turns up head. What is the expected number of tosses to get heads
on both the coins?

Solution (Shreya Bhattarai, 2nd Year, UWA)
Let E(2) be the expected number of tosses to finish the game and E(1)
the expected number to toss one head.
Then E(2) = 1 + 1

4
(E(2)) + 1

2
(E(1)), where the first term represents

the current toss, the second a toss of {T, T}, and the third a toss of
{T,H}.
Since E(1) = 1 + 1

2
(E(1)) we see that E(1) = 2 and hence E(2) =

2 + 1
4
(E(2)), from which E(2) = 8

3
.

7. Maximise the product
(a) Given a positive integer n, find a finite sequence (a1, a2, . . . , am) of
positive integers whose sum is n and whose product is maximal.
(b) Now try the same problem with ‘integer’ replaced by ‘real number’.

Solution (Shreya Bhattarai, 2nd year, UWA)
(a) Let ai + · · · + ak = n > 1. If any ai ≥ 4, we do not decrease the
product by replacing ai by (ai− 2) + 2, so we can assume all the ai are
2 or 3. If there are more than two 2’s, we can increase the product by
replacing 2 + 2 + 2 by 3 + 3. Hence the maximum product is obtained
with zero, one or two 2’s and the rest of the terms 3’s.
(b) First we show that for a maximum product, all the terms of the sum
must be equal. Suppose n = x1+· · · xk with xi 6= xj. By the arithmetic-

geometric mean inequality,

(
xi + xj

2

)2

> xixj so the product can be

increased by replacing each by their average.

Now we have to find the number k which maximises the product
(n
k

)k
.

For this, replace the rational n/k by a continuous variable x and con-
sider the differentiable function f(x) = xn/x.



Then

f ′(x) =

(
n

x2
− n lnx

x2

)
xn/x =

n

x2
xn/x(1− lnx)

Since f ′(x) > 0 for x < e and f ′(x) < 0 for x > e, f(x) attains its
maximum for x = e.
So n/k should be close to e for the maximum product. Choose the
integer m such that m < n/e < m + 1 and compare (n/m)m and
(n/m + 1)m+1. Call m∗ whichever of m or m + 1 gives the greater
value. Then the required sequence is constant with m∗ terms of value
n/m∗.

8. ‘Regression’ line

Let P1(x1, y1), P2(x2, y2) and P3(x3, y3) be three points in the plane,
with x1 < x2 < x3. Say that y = Ax + B is a least absolute line if the
function

g(a, b) =
3∑
1

|axi + b− yi|

has a minimum at (a, b) = (A,B).
Must a least absolute line pass through two of the three points?

Solution Yes. Each line y = ax + b with a 6= 0 divides the plane into
an upper half plane Uab and a lower half plane Lab.
For fixed a, g(a, b) is a decreasing function of b when Uab contains two
or three Pi in its interior and an increasing function of b when Lab
contains two or three Pi in its interior.
So for fixed a, the minimum of g(a, b) occurs when the line y = ax+ b
contains a vertex (xr, yr) of triangle P1P2P3 and a point on the opposite
side.
For the line y = a(x− xr) + yr containing (xr, yr), the function

g(a, yr − axr) =
3∑
i=1

|a(xi − xr)− (yi − yr)|

is a linear function of a if the line does not contain a second vertex.
Also lima→±∞ g(a, yr − axr) =∞.
Hence if y = ax+b contains (xr, yr) then the minimum of g(a, b) occurs
when the line contains a second vertex. A simple geometric argument
shows that the distance from Pi to this line is minimised when i = 2.
Thus the least absolute line is that containing P1 and P3.

9. Circulant matrices



A matrix such as 
2 5 8 9
9 2 5 8
8 9 2 5
5 8 9 2


in which each row is obtained by shifting the previous row one step
to the right, with the last entry returning to the beginning, is called a
circulant.
Prove that the set of n × n circulant matrices with real number en-
tries is closed under addition and multiplication and multiplication is
commutative.
Show that if a circulant is invertible, then its inverse is a circulant.

Solution Let A = (aij) and B = (bij) be circulant matrices, so aij =
ai+1,j+1 (indices taken modulo n). Then aij + bij = ai+1,j+1 + bi+1,j+1

so A+B is circulant.
NowAB = (cij) where cij =

∑
k aikbkj =

∑
k ai+1,k+1bk+1,j+1 = ci+1,j+1.

Hence AB is circulant.
Also BA = (dij) where

dij =
∑
k

bikakj =
∑
k

bi+(j−k),k+(j−k)ak+(i−k),j+(i−k)

=
∑
k

bi+j−k,jai,i+j−k =
∑
k

ai,i+j−kbi+j−k,j = cij.

Hence BA = AB.
Now suppose A is an invertible circulant with first row (a1, a2, . . . , an).
We have to show that there is an n–tuple b = (b1, b2, . . . , bn) such that
if B is the circulant with this first row, then AB = 1. The first column
of B is also b, so b, if it exists, is the solution of the linear system with
augmented matrix [A|e1], where e1 is the first standard basis element.
Since A is invertible, b exists (and is unique). But then the second
column of B, (b2, . . . , bn, b1) is the solution of the linear system with
augmented matrix [A|e2] and so on. Hence AB = In.

10. Jumping Gorillas

A gorilla, of mass 100kg, is imprisoned inside a cage of mass 350kg,
which is suspended in mid-air on a long rope thrown over a pulley. At
the other end of the rope is a counterweight of mass 450kg, exactly
balancing the combined weight of the cage and gorilla.
Attached to the roof of the cage, on the inside, is a delicious bunch
of bananas, which the gorilla would love to eat. Unfortunately they’re



out of his reach, by 10cm. He decides to jump up into the air, just far
enough to be able to grab the bananas, then fall back down to the cage
floor.
How fast does he need to jump? Specifically, with what speed does the
gorilla need to move away from the cage floor?
You may assume that g = 10ms−2.
(We acknowledge with thanks the on–line magazine Plus (http://plus.maths.org.uk/)
from which this problem was borrowed.)

Solution Assume that the rope is light, the pulley frictionless etc. For
convenience, we can regard the system (cage + counterwieght) as a
single element.
In jumping, the gorilla exerts a force internal to the system (gorilla +
cage + counterwieght) so in this phase of the motion the centre of mass
does not move.
Let the initial velocity of the gorilla upwards be u and the initial ve-
locity of the (cage + counterwieght) downwards be U .
The fixed centre of mass implies 100u = (350 + 450)U , so u = 8U .
Choose the origin at the floor of the cage and measure displacements
upwards.
For the subsequent motion of the gorilla we have

ẍ = −g
ẋ = u− gt, (ẋ(0) = u)

x = ut− 1

2
gt2, (x(0) = 0)

The subsequent motionof the cage has upwards acceleration

difference of masses

sum of masses
=

100

8
g

Then

Ẍ = g/8

Ẋ = −U + gt/8, (Ẋ(0) = −U)

X = −Ut+
1

2
gt2/16, (X(0) = 0)



Distance between gorilla and cage

=x−X

=ut− 1

2
gt2 − (−Ut+ gt2/16)

=
9

8
(ut− 1

2
gt2

This attains its maximum when t =
u

g
so the maximum distance is

9

8

1

2

u2

g
.

We require this distance to be 0.1 m, implying u =

√
0.1

16g

9
=

4

3
,

using g = 10ms−2.
Then the relative velocity of gorilla and cage is u+U = 9

8
u = 1.5ms−1.


