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1. Argument duplication

Determine all real polynomials P (x) such that P (2x) = P ′(x) · P ′′(x) for all x ∈ R.

Solution. [By Aaron Maynard and Phillip Meng, both 3rd year, UWA]
Let P (x) be a real polynomial such that P (2x) = P ′(x) · P ′′(x) for all x ∈ R.
The zero polynomial is one such polynomial P (x).
Suppose that P (x) is not the zero polynomial and let n be the degree of P (x). Then the
degree of P (2x) is n. If n is equal to 0 or 1, then P ′(x) · P ′′(x) will be the zero polynomial,
and so will not be equal to P (2x). If n ≥ 2, then the degree of P ′(x) · P ′′(x) will be
(n − 1) + (n − 2) = 2n − 3. Therefore, P (2x) = P ′(x) · P ′′(x) implies that n = 2n − 3 and
hence n = 3. So, P (x) is a cubic polynomial of the form a + bx + cx2 + dx3, with d 6= 0.
Therefore,

P (2x) = a+ 2bx+ 4cx2 + 8dx3

P ′(x) · P ′′(x) = (b+ 2cx+ 3dx2)(2c+ 6dx)

= 2bc+ (4c2 + 6bd)x+ 18cdx2 + 18d2x3

and so
a+ 2bx+ 4cx2 + 8dx3 = 2bc+ (4c2 + 6bd)x+ 18cdx2 + 18d2x3

which implies that

a = 2bc

2b = 4c2 + 6bd
4c = 18cd

8d = 18d2.

Solving this set of simultaneous equations, first we find d = 4
9 (recall d 6= 0), from which we

see that successively c = 0, b = 0 and a = 0, giving us the solution P (x) = 4
9x

3.
Therefore, the only real polynomials P (x) such that P (2x) = P ′(x) · P ′′(x) for all x ∈ R are
P (x) = 0 and P (x) = 4

9x
3.

2. So tyred

A car has 4 tyres, and in its boot are stored 3 spare tyres. Each tyre can be used for
40 000 km.

What is the maximum distance that the car can be driven? (The tyres can be interchanged
as many times as you want.)



Solution. [By Aaron Maynard and Phillip Meng, both 3rd year, UWA]
There are 7 tyres, each of which can travel 40 000 km, giving a total of 280 000 tyre km. Since
4 tyres need to be attached to the car for it to travel, the maximum distance the car can
travel is at most 280 000

4 = 70 000 km.
The table below shows one way the car may be driven for 70 000 km:

Distance car has travelled
First 30 000 km Next 10 000 km Next 10 000 km Next 10 000 km Next 10 000 km

Tyre 1 X X
Tyre 2 X X
Tyre 3 X X
Tyre 4 X X
Tyre 5 X X X X
Tyre 6 X X X X
Tyre 7 X X X X

Thus we have shown that the maximum distance that the car can travel is bounded above
by 70 000 km, and that 70 000 km is achievable.
Therefore, the maximum distance that the car can travel is 70 000 km.

3. Inequality

Prove that (n!)2 > nn for all n ≥ 3.

Solution. [By Tuo Li, 2nd year, UWA]
We can organise the factors of (n!)2 in the following way:

(n!)2 = (n · 1) · ((n− 1) · 2) · ((n− 2) · 3) · · · (1 · n) =
n−1∏
i=0

(n− i)(i+ 1).

Hence the inequality (n!)2 > nn can be rewritten as
n−1∏
i=0

(n− i)(i+ 1)
n

> 1. (1)

For each integer i ∈ [0, n− 1], (n− i)(i+ 1)
n ≥ 1, since

(n− i)(i+ 1)
n

= 1 +
i(n− i− 1)

n
and i, n− i− 1 ≥ 0.

Moreover we have equality (n− i)(i+ 1)
n = 1 exactly when i(n − i − 1) = 0, that is, when

i = 0 or i = n− 1.
Therefore we have

n−1∏
i=0

(n− i)(i+ 1)
n

≥ 1 · 1 · · · 1 = 1.

Since n ≥ 3, the product has at least 3 factors; so at least one of the factors (say for i = 1)
is strictly greater than 1. So, for n ≥ 3 the inequality (1) is strict. Hence,

(n!)2 > nn for all n ≥ 3.
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4. Black or white cube

A 3 × 3 × 3 cube is assembled from 27 1 × 1 × 1 cubes all of whose faces are white. We
paint all of the faces of the large cube black, and then disassemble it. A blindfolded man
reassembles the large cube from the 27 little cubes.

What is the probability that all the faces of the reassembled cube are completely black?

Solution. [By Aaron Maynard, 3rd year, UWA]
Of the 27 little cubes, one is completely white, six are black on one face, twelve are black
on two (edge-sharing) faces and eight are black on three (corner-sharing) faces. When the
large cube is reassembled, each of the little cubes has 27 possible positions and 24 possible
orientations. Therefore, the total number of possible large cubes is

27!× 2427.

Suppose that all of the faces of the reassembled large cube are completely black. There is
1! possible way to position the white cube, 6! possible ways to position the cubes with one
black face, 12! for the cubes with two black faces, and 8! for the cubes with three black faces.
There are also 24 ways to orient the white cube, 4 ways to orient each of the cubes with one
black face, 2 ways to orient each of the cubes with two black faces, and 3 ways to orient each
of the cubes with three black faces. Therefore, the total number of possible large, completely
black cubes is

1!× 6!× 12!× 8!× 241 × 46 × 212 × 38.

Therefore, the probability that the reassembled cube is completely black is

6!× 12!× 8!× 24× 46 × 212 × 38

27!× 2427
=

6!× 12!× 8!
27!× 2418

=
1

5 465 062 811 999 459 151 238 583 897 240 371 200
.

This is approximately 1.829× 10−37; in other words, a very small probability.

5. Touching circles

Let circles K1 and K2 be touching at point P , with the smaller circle K1 inside K2. Let line
` be tangent to K1 at A and intersect K2 at points B and C.

Show that PA is the (interior) angle bisector of ∠BPC.

Solution. [By Tuo Li, 2nd year, UWA]
We make extensive use of the following standard theorem.

Theorem 1 (Alternate Segment Theorem). If PQ is a chord of a circle K, X is a point
external to K such that XP is the tangent line to K through P , and A is another point on
K that is on the opposite side of PQ to X, then ∠XPQ = ∠PAQ.

Proof. Let O be the centre of K. Then

∠PAQ = 1
2∠POQ, angles at circumference

and centre standing on
same arc PQ

∠OPQ+ ∠XPQ = 90◦ and ∠OPQ = ∠OQP

∴ 180◦ = ∠OPQ+ ∠OQP + ∠POQ = 2∠OPQ+ ∠POQ

∴ 90◦ = ∠OPQ+ 1
2∠POQ

∴ ∠XPQ = 1
2∠POQ = ∠PAQ

P

Q

A

O

X3



Now let us consider the given problem.
Let ` intersect the tangent line to K1 and K2 (through P ) at X.
Without loss of generality, take C to be farther than B from X.
Let BP intersect K1 at D. Let PC intersect K1 at E.
By Theorem 1,

∠DPA = ∠BAD, (chord AD, tangent BA, circle K1) (2)
∠EPA = ∠CAE, (chord AE, tangent CA, circle K1) (3)
∠DAP = ∠XPB, (chord PD, tangent XP , circle K1) (4)
∠BCP = ∠XPB, (chord PB, tangent XP , circle K2) (5)
∠AEP = ∠BAP, (chord AP , tangent BA, circle K1) (6)

P E
C

A
D

B
X

`

K1

K2

So we have

∠BAD + ∠DAP = ∠BAP

= ∠AEP, by (6)
= ∠CAE + ∠ACE, ∠AEP is exterior to 4EAC

∴ ∠BAD = ∠CAE, since ∠DAP = ∠BCP , by (4) and (5),
and ∠BCP = ∠ACE (same angle)

∴ ∠DPA = ∠EPA by (2) and (3)
∴ PA is the angle bisector of ∠DPE = ∠BPC.

6. Integral boxes

A vector v
˜

= (x, y, z) ∈ R3 is integral if each component is an integer.

Prove that if u
˜

, v
˜

and w
˜

are mutually orthogonal integral vectors with the same length L,
then L is an integer.

Solution. [By Mitchell Misich, 3rd year, UWA]
Given three mutually orthogonal integral vectors u

˜
,v
˜
,w
˜

with the same length L 6= 0, they
define a parallelepiped that is actually a cube. (Note that we can ignore the trivial case
L = 0, since 0 ∈ Z, and so there is nothing to prove in this case.)
The volume of the cube defined by u

˜
,v
˜
,w
˜

is L3 = |u
˜

· (v
˜

× w
˜

)| and so L3 is an integer.
Furthermore, L2 = u

˜
· u
˜

and so L2 is an integer.
Therefore, L = L3

L2 is rational, and since L2 is an integer, L must also be an integer.

� Theorem. If N ∈ Q and N2 ∈ Z then N ∈ Z.

Proof. Since N ∈ Q, N = a
b

for some a, b ∈ Z with b 6= 0 and a, b coprime, i.e. gcd(a, b) = 1.
Since N2 ∈ Z, we have b2 divides a2 and hence for any prime divisor p of b, we have

p2 a2

=⇒ p a2 = a · a
=⇒ p a or p a, by Euclid’s Lemma
=⇒ p a.

Thus any prime divisor p of b is also a divisor of a, so that gcd(a, b) ≥ p.
So we have a contradiction, unless b has no prime divisors.
Therefore, b = 1 and N ∈ Z.
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7. Counting digits

From a positive integer n (in decimal form), we form another one α(n) as follows: write the
number of even digits of n then the number of odd digits of n, then the total number of
digits of n. For instance α(8484848486775) = 10313 and α(7777) = 044 = 44.

Is there a number k such that, for any n, αi(n) = k, for i sufficiently large?

Solution. [Inspired by Karl Beidatsch, 3rd year, Curtin]
The answer is: Yes, with number k = 123 being always ultimately reached.
Call a sequence, n, α(n), α2(n), . . . an α-sequence, and for brevity let us write it in the form

n
α7−→ α(n) α7−→ α2(n) α7−→ · · · .

We first show that if n has 1, 2 or 3 digits, then αi(n) = 123 for i sufficiently large.
(Note that whenever an α-sequence reaches a number that has been seen previously, we can
stop, since the sequence thereafter will continue in the manner of the sequence previously
analysed; we indicate this by a statement of form “proceed as above”.)

If n has 1 digit which is odd, then: n
α7−→ 11 α7−→ 22 α7−→ 202 α7−→ 303 α7−→ 123.

If n has 1 digit which is even, then: n
α7−→ 101 α7−→ 123.

If n has 2 digits, both odd, then: n
α7−→ 22 α7−→ proceed as for 1 odd digit.

If n has 2 digits, both even, then: n
α7−→ 202 α7−→ proceed as for 1 odd digit.

If n has 2 digits, one odd, one even, then: n
α7−→ 112 α7−→ 123.

If n has 3 digits, all odd, then: n
α7−→ 33 α7−→ 22 α7−→ proceed as for 1 odd digit.

If n has 3 digits, two odd, one even, then: n
α7−→ 123.

If n has 3 digits, one odd, two even, then: n
α7−→ 213 α7−→ 123.

If n has 3 digits, all even, then: n
α7−→ 303 α7−→ proceed as for 1 odd digit.

In particular, 123 α7−→ 123.
We now prove the statement:

If n has ` digits, ` ≥ 4, then α(n) has strictly less than ` digits.
Suppose ` itself has m digits, that is, 10m−1 ≤ ` < 10m. Then the number of odd digits of n,
number of even digits of n, and total number of digits of n, are each at most m. Hence α(n)
has at most 3m digits.
For m ≥ 2, we have 3m < 10m−1, since

10m−1 = (1 + 9)m−1 ≥ 1 + 9(m− 1), by Bernouilli’s Inequality
= 1 + 9m− 9
≥ 1 + 3m+ 12− 9, since m ≥ 2
> 3m;

so 3m < ` and α(n) has strictly fewer digits than n.
For m = 1, we have 3m = 3 < ` since ` ≥ 4 and α(n) has strictly fewer digits than n.
In conclusion, if n has three digits or fewer, αi(n) = 123 for i sufficiently large (in fact, i ≤ 5);
if n has more than three digits, successive applications of α give numbers with progressively
fewer digits, until a number is reached with three or fewer digits, and then we can apply the
previous statement (so that, we at least have i ≤ log10(n) + 5).
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8. Polynomials

Does there exist a polynomial p(x, y) with real coefficients such that p(m,n) is a non-negative
integer (i.e. in Z≥0), if m,n ∈ Z≥0 and such that p : (Z≥0)

2 → Z≥0 is a bijection?

Note. A polynomial p(x, y), i.e. one in two variables, becomes a polynomial in one variable
by setting either variable to a constant. For example, take p(x, y) = 2x3 + xy2 + 7xy + y2.

Solution. [Inspired by Aaron Maynard, 3rd year, Saul Freedman, 1st year, UWA]
À la “Cantor’s zig-zag” argument, we number the pairs of non-negative integers (x, y) in the
following way:

x
0 1 2 3 4 5 · · ·

0 0 1 3 6 10 15
1 2 4 7 11 16
2 5 8 12 17

y 3 9 13 18
4 14 19
5 20
...

More precisely we define p, recursively, as follows:

p(0, 0) = 0,
p(x, 0) = p(0, x− 1) + 1, if x ≥ 1,
p(x, y) = p(x+ 1, y − 1) + 1, if y ≥ 1.

Observe that every non-negative integer appears exactly once in the body of the table. Hence
p is a bijection as required. We want to show that p is a polynomial with real coefficients.
We claim that p(x, 0) = 1

2x(x + 1). This is trivially true for x = 0. Assume it is true for x,
and let us deduce it for (x+ 1). We have

p(x+ 1, 0) = p(0, x) + 1
= p(1, x− 1) + 2
...
= p(x, 0) + x+ 1
= 1

2x(x+ 1) + (x+ 1)
= 1

2(x+ 1)(x+ 2).

Hence the claim follows by induction. Now

p(x, y) = p(x+ 1, y − 1) + 1
= p(x+ 2, y − 2) + 2
...
= p(x+ y, y − y) + y

= p(x+ y, 0) + y

= 1
2(x+ y)(x+ y + 1) + y

= 1
2x

2 + 1
2y

2 + xy + 1
2x+ 3

2y,

which is a polynomial with real coefficients.

6



9. A map of a square

Let f : R2 → R be a map such that f(a) + f(b) + f(c) + f(d) = 0 whenever a, b, c, d are the
4 vertices of a square.

Is it true that f(x) = 0 for all x ∈ R2?

Solution. [By Tuo Li, 2nd year, UWA]
Choose an arbitrary point X ∈ R2.
Construct a square ABCD, with X as its centre.
Let E, F , G, H be the midpoints of AD, AB, BC, CD,
respectively.
Since AFXE, DEXH, BGXF and CHXG are
squares, we have:

f(A) + f(F ) + f(X) + f(E) = 0 (7)
f(D) + f(E) + f(X) + f(H) = 0 (8)
f(B) + f(G) + f(X) + f(F ) = 0 (9)
f(C) + f(H) + f(X) + f(G) = 0 (10)

A E D

F X H

B G C

Adding (7), (8), (9), (10), we have(
f(A) + f(B) + F (C) + f(D)

)
+ 2
(
f(E) + f(F ) + F (G) + f(H)

)
+ 4f(X) = 0. (11)

But ABCD and EFGH are also squares; hence

f(A) + f(B) + f(C) + f(D) = 0 and
f(E) + f(F ) + f(G) + f(H) = 0,

and so (11) reduces to

4f(X) = 0
∴ f(X) = 0.

Since x = X was arbitrarily chosen, it follows that:
Yes, it is true that f(x) = 0 for all x ∈ R2.
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10. A prime degree polynomial

A polynomial of degree 2011 with real coefficients is such that P (n) = n
n+ 1 for all integers

n ∈ {0, 1, 2, . . . , 2011}.
What is the value of P (2012)?

Solution. We are given a polynomial P (x) over R (i.e. with real coefficients) of degree 2011.
Let Q(x) = (x + 1)P (x) − x. Then Q(x) is a polynomial of degree 2012 over R and for
n ∈ {0, 1, 2, . . . , 2011},

Q(n) = (n+ 1) · n

n+ 1
− n = 0,

so that Q(x) has zeros 0, 1, 2, . . . , 2011.
Since Q(x) is of degree 2012 and has 2012 distinct zeros, it can have no other zeros. Hence,

Q(x) = k
2011∏
i=0

(x− i)

for some real constant k. Now,

1 = Q(−1)

= k

2011∏
i=0

(−1− i)

= k · (−1)2012 ·
2011∏
i=0

(i+ 1)

= k · 2012!

∴ k =
1

2012!

∴ Q(x) =
1

2012!

2011∏
i=0

(x− i)

∴ 2013 · P (2012)− 2012 = Q(2012) =
1

2012!

2011∏
i=0

(2012− i)

=
1

2012!
· 2012! = 1

∴ P (2012) =
1 + 2012

2013
= 1.
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