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2017 Problems with Solutions

Note. Our convention is that N = {1, 2, . . . } (the positive integers).

1. Series-ly big

Two sequences of integers are defined by a0 = b0 = 9, an+1 = 9an and bn+1 = bn! for all
integers n ≥ 0.

Which is larger: a2017 or b2017?

Solution. Our strategy is to show an > 2bn log9(bn) for all n ∈ N by induction, from which
it follows that

a2017 > 2b2017 log9(b2017) > b2017.

Let P (n) : an > 2bn log9(bn).

P (1) holds, since

a1 = 99 = 387 420 489

> 6 531 840

= 2 · 9! · 9
= 2 · 9! · log9(9

9)

> 2 · 9! · log9(9!) = 2b1 log9 b1.

If the above inequality is true for an integer n > 0, it is also true for n+1. Indeed,
an+1 = 9an > 92bn log9 bn = (bn)2bn = (bbnn )2 > (bn!)2 and we have to prove that (bn!)2 >
2bn+1 log9 bn+1 = 2(bn!) log9(bn!). That is, bn! > 2 log9(bn!), which is the case since x >
2 log9 x (or in other words, 9x > x2) for any real number x > 0.

2. Cutting triangles

Let T be a triangle whose side lengths are 3, 4 and 5.

What is the length of the smallest line segment cutting this triangle into two pieces with
the same area?

Solution. Let T = 4ABC with |AB| = 5, |AC| = 4 and |BC| = 3. Since 32 + 42 = 52,
ABC is a right-angled triangle of area 6. Let us first suppose that the cutting of ABC into
two pieces of area 3 connects two points P and Q in line segments AB and AC, respectively.
Let x = |AQ|, y = |AP | and z = |PQ|.
The area of the triangle APQ is 1

2xy sin θ = 3, where θ = ∠BAC; so xy = 6/ sin θ.

On the other hand,

z2 = x2 + y2 − 2xy cos θ = (x− y)2 + 2xy(1− cos θ) = (x− y)2 +
12(1− cos θ)

sin θ
.

The minimum of z2 is thus obtained when x = y and, since cos θ = 4
5 and sin θ = 3

5 this

minimum is 4, so that z = 2. Since x = y, x2 = 6/ sin θ = 10, it follows that x = y =
√

10.

A similar calculation shows that the length of the smallest segment cutting ABC into two
pieces of the same area is

√
6 if it joins line segments AB and BC, and

√
12 if it joins line

segments AC and BC. Hence the minimum length sought is 2.



3. Polynomially prime

Is there a polynomial p(x) with integer coefficients such that p(x) = 2000 for at least one
integer value of x and p(x) = 2017 for four other distinct integer values of x?

Solution. Such a polynomial does not exist. Indeed, since p(x) takes the value 2017 for 4
integer values of x, q(x) = p(x) − 2017 has at least four distinct integer roots a, b, c and d.
Therefore q(x) = (x− a)(x− b)(x− c)(x− d)r(x), where q(x) and r(x) are polynomials with
integer coefficients.

Now, if there exists an integer e such that p(e) = 2000, then q(e) = −17, that is

(e− a)(e− b)(e− c)(e− d)r(e) = −17.

Consequently, e− a, e− b, e− c and e− d are 4 divisors of −17. But the only integer divisors
of −17 are 1, −1, 17 and −17; so 1 · −1 · 17 · −17 · r(e) = −17, or r(e) = − 1

17 , a contradiction
since r(e) is an integer.

4. Cube assembly

A person assembles n3 small white 1× 1× 1 cubes together to construct a large n× n× n
cube, then paints a certain number of faces of the large cube, black.

Knowing that there are exactly 218 small cubes having at least one black face, what is the
value of n?

Solution. [Inspired by Conway Li’s solution]
Suppose that f faces of the large (n3) cube are painted black in such a way that e of its edges
are shared by two black faces and v of its vertices are shared by three black faces. Then the
number of small cubes having at least one black face is b = fn2 − en + v. We first list the
possible triples (f, e, v). Then we check whether the quadratic b = 218 has solutions (Number
Theory is useful for excluding integer roots). The results are summarised below:

F E V b = fn2 − en+ v Check

1 0 0 n2 7 218 6= n2

2 0 0 2n2 7 218 = 2 · 109 6= 2n2

2 1 0 2n2 − n 7 218 = 2 · 109 6= n(2n− 1)
3 2 0 3n2 − 2n 7 218 = 2 · 109 6= n(3n− 2)
3 3 1 3n2 − 3n+ 1 7 218 6≡ 1 (mod 3)
4 4 0 4n2 − 4n 7 218 6≡ 0 (mod 4)
4 5 2 4n2 − 5n+ 2 3 218− 2 = 63 = 8 · 27 = n(4n− 5)|n=8

5 8 4 5n2 − 8n+ 4 7 218− 4 = 2 · 107 6= n(5n− 8)
6 12 8 6n2 − 12n+ 8 3 218− 8 = 6 · 5 · 7 = 6n(n− 2)|n=7

Hence n = 7 or n = 8 are the only solutions.

5. Surdly positive

For which real numbers x > 0 is the number 3
√

3 +
√
x + 3

√
3−
√
x a positive integer?
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Solution. We look for the real numbers x ≥ 0 such that 3
√

3 +
√
x+ 3

√
3−
√
x = n where

n is a positive integer. By cubing both sides and rearranging, we obtain n3 = 6 + 3n 3
√

9− x,

or
(
n3−6
3n

)3
= 9− x, which implies x = 9−

(
n2

3 −
2
n

)3
.

Now, 9 −
(
n2

3 −
2
n

)3
≥ 0 for 0 < n ≤ 2 3

√
3 ≈ 2.88. Therefore the only possible values of

n are 1 and 2. The corresponding values of x are 368
27 and 242

27 , and it is easily verified that
these are indeed the solutions to the problem.

6. Really coloured

Suppose we colour each point of R3 red, yellow or blue.

Is it true that one of these colours “will realise all the distances”, that is to say for any real
number d > 0, there will be at least two points of distance d apart, having this colour?

Solution.
One will say that a colour “realises” a distance d if there are two points of R3 at distance d
having this colour. We will prove that one of the three colours achieves all the distances. Let
us proceed by contradiction and assume that there are three distances r, y and b such that
red does not realise r, yellow does not realise y and blue does not realise b. By changing the
names of the colours, it is not restrictive to assume that r ≥ y ≥ b > 0.

Then there exists a sphere S of radius r with no red points on S, either because there
are no red points at all or this sphere is centered at a red point. All the points on S are
therefore yellow or blue. Since r ≥ b > 0, S contains two points at distance b. Now, if all
points on S were blue, then blue would realise b. Thus S must contain at least one yellow
point Y . Consider the sphere S′ centered at Y with radius y. The spheres S and S′ intersect
in a circle which must be entirely blue. An easy computation (using Pythagoras) shows that

this circle has radius R =
√
y2 − y4

4r2
. It easily follows that b ≤ y ≤ 2r (this uses the fact that

y ≤ r). Hence there exist two points P and Q on this circle at distance b, so blue realises b,
a contradiction.
Remark: the negative of the statement is NOT that there exists a distance x not realised by
any of the colours.

7. Alice and Bob coin a game

Alice and Bob invented a new game. One hundred coins (of Australian denominations from
5 c to $2) are randomly placed in a single row. Alice and Bob take turns alternately, choosing
a coin from one of the ends of the row, with Alice going first. Play continues until Bob takes
the last coin. If the amount of money raised by one of the players is greater than that of
their opponent, they have won the game. Of course, neither may win, as in the case, for
example, that the 100 coins all have the same value.

Does one of the players have a strategy that never loses, regardless of what their opponent
does or the numbers of each denomination of coin, and regardless of how the 100 coins are
arranged in the row initially?
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Solution.
Alice has a strategy to never lose. To see this, imagine that the 100 coins are coloured alter-
nately in red and blue. Before playing her first shot, Alice calculates the sum R of the values
of the red coins and the sum B of the values of the blue coins. We can assume, without
loss of generality, that R ≤ B. Alice will make sure to take all the blue coins. It is always
possible because, as the colours of the pieces alternate, if at any moment of the game there
is an even number of pieces, the pieces at the two ends are of different colours. Whenever
Alice is playing, there remains an even number of coins. She can therefore take a blue coin
each time. On the other hand, when Bob plays his two choices are both red.

This strategy applies more generally to any row formed by an even number of coins.
Note that this strategy is not necessarily optimal. For instance, if the coins are 2,1,1,2,1,1 in
that order, then this strategy will give a draw, when Alice can actually win. More generally,
if R = B, Alice can improve her chances by computing (every time it is her turn to play) the
sum of the remaining blue and red coins, and swap her strategy from picking the blue coins
to picking the red coins if the sum of the remaining red coins is larger than the sum of the
remaining blue coins.
Note also that if the total number of coins is odd, neither of the players has a strategy to
never lose. For example, if there are only 3 coins (one of 2 dollars surrounded by two 5 cent
coins), Bob will win, whatever Alice does. But if two 2-dollar coins surround a 5-cent coin,
Alice will win, no matter what Bob does.

8. Tetra-luck

A regular tetrahedron T is placed on a horizontal plane. Let F be the face on which T lies.
T is rotated around one of the randomly selected three edges of F , until it rests on some
other face F ′ containing this edge. The operation is then repeated with one of the three
edges of F ′, and so on.

What is the probability pn that after n steps, T again rests on the face F?

Solution. It is clear that p0 = 1 and p1 = 0. The only thing that would prevent T resting on
the face F after n steps is when it already rests on this face after n−1 steps. The probability
that this happens is pn−1; that is, the probability that this does not happen is 1 − pn−1. If
you are in this situation, there is a 1 in 3 chance that T rests on face F in the next step.
Therefore, pn = 1

3(1 − pn−1), which can be written as pn − 1
4 = −1

3

(
pn−1 − 1

4

)
. Therefore

pn−1− 1
4 is a geometric progression with common ratio −1

3 and initial term p0− 1
4 = 3

4 . Hence
pn = 3

4

(
−1

3

)n
+ 1

4 .

9. Working at a two-dimensional ball

In the plane R2, we consider two concentric discs of radii 1 and rn > 1, where rn is such
that the ring between the two discs contains n discs (the “balls”) of diameter rn − 1, each
disc being tangent to its two neighbours in the ring.

If An denotes the sum of the areas of the n balls and Bn the ring area, what is the limit of
An/Bn as n tends to infinity?
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Solution.
The “balls” are of radius ρn = 1

2(rn − 1). So,

An

Bn
=

nπρ2n
πr2n − π

=
n(rn − 1)2

4(r2n − 1)
=
n(rn − 1)

4(rn + 1)
.

Let O be the common centre of the two concentric discs, T the point at which two adjacent
“balls” touch, C the centre of one of the two “balls”, and α = ∠COT . Then, since α = π/n,
we have

sin
(π
n

)
= sinα =

ρn
1 + ρn

,

and hence

An

Bn
=
n

4
sin
(π
n

)
∴ lim

n→∞

An

Bn
=
π

4
,

since

lim
x→0

sinx

x
= 1.

. .
.. . .

rn = 1 + 2r
1

r

r

π/n

10. Octuple triplets

In Euclidean space R3, does there exist a set S of 8 points such that in each subset of size
3 of S, at least two of the distances between these points are equal?

Solution.
The answer is: Yes. Consider, in the plane Oxy of R3, a regular pentagon inscribed in a circle
of radius 1 centred at the origin. The 5 vertices of the pentagon, the origin (0, 0, 0) and the
2 points (0, 0,±1) form a set S of 8 points such that, in each subset of 3 points of S, at least
two of three distances between these points are equal.
Hallard Croft demonstrated in 1962 that there is no set of 9 points of R3 having this property.
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