The University of Western Australia

DEPARTMENT OF MATHEMATICS AND STATISTICS

BLAKERS MATHEMATICS COMPETITION
 2022 Problems with Solutions

Note. Our convention is that $\mathbb{N}=\{1,2, \ldots\}$ (the positive integers).

1. Easy but complex

Suppose $z_{1}, z_{2} \in \mathbb{C}$ such that

$$
\begin{aligned}
\left|z_{1}\right|=\left|z_{1}+z_{2}\right| & =3 \\
\left|z_{1}-z_{2}\right| & =3 \sqrt{3} .
\end{aligned}
$$

Determine $\left\lfloor\log _{3}\left|\left(z_{1} \overline{z_{2}}\right)^{2022}+\left(\overline{z_{1}} z_{2}\right)^{2022}\right|\right\rfloor$, where $\lfloor x\rfloor$ is the floor of x (the largest integer less than or equal to $x \in \mathbb{R}$), and $|z|$ and \bar{z} are, respectively, the modulus and conjugate of $z \in \mathbb{C}$.

Solution. Recall the general properties for $z, z_{1}, z_{2} \in \mathbb{C}$,

$$
\begin{aligned}
|z|^{2} & =z \bar{z} & \overline{z_{1}+z_{2}} & =\overline{z_{1}}+\overline{z_{2}} \\
z+\bar{z} & =2 \operatorname{Re} z & \overline{z_{1} z_{2}} & =\overline{z_{1}} \overline{z_{2}}
\end{aligned}
$$

Then for the given $z_{1}, z_{2} \in \mathbb{C}$, we have

$$
\begin{align*}
9=3^{2} & =\left|z_{1}+z_{2}\right|^{2} \\
& =\left(z_{1}+z_{2}\right)\left(\overline{z_{1}+z_{2}}\right) \\
& =z_{1} \overline{\bar{z}_{1}}+z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}+z_{2} \overline{z_{2}} \\
& =\left|z_{1}\right|^{2}+2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)+\left|z_{2}\right|^{2} \tag{1}\\
27=(3 \sqrt{3})^{2} & =\left|z_{1}-z_{2}\right|^{2} \\
& =\left|z_{1}\right|^{2}-2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)+\left|z_{2}\right|^{2} \tag{2}
\end{align*}
$$

$$
\therefore \frac{1}{2}((1)-(2)):-9=2 \mathcal{R e}\left(z_{1} \overline{z_{2}}\right)
$$

$$
\frac{1}{2}((1)+(2)): 18=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}
$$

$$
=9+\left|z_{2}\right|^{2} \text {, since }\left|z_{1}\right|=3
$$

$$
\therefore\left|z_{1}\right|=\left|z_{2}\right|=3
$$

$$
\therefore\left|z_{1} \overline{z_{2}}\right|=\left|z_{1}\right|\left|\overline{z_{2}}\right|=\left|z_{1}\right|\left|z_{2}\right|=9
$$

$$
\therefore z_{1} \overline{z_{2}}=9 \operatorname{cis} \theta \text { for some } \theta \in(-\pi, \pi]
$$

$$
\therefore-\frac{9}{2}=\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)=9 \cos \theta
$$

$$
-\frac{1}{2}=\cos \theta
$$

$$
\pm \frac{1}{2} \sqrt{3}=\sin \theta
$$

$\therefore\left\{z_{1} \overline{z_{2}}, \overline{z_{1}} z_{2}\right\}=\left\{9 \omega, 9 \omega^{2}\right\}$, where ω is a complex cube-root of unity

$$
\therefore\left(z_{1} \overline{z_{2}}\right)^{2022}+\left(\overline{z_{1}} z_{2}\right)^{2022}=9^{2022} \omega^{2022}+9^{2022} \omega^{4044}
$$

$$
=2 \cdot 9^{2022} \text {, since } 3 \mid 2022 \Longrightarrow \omega^{2022}=\omega^{4044}=1
$$

$\therefore\left\lfloor\log _{3}\left|\left(z_{1} \overline{z_{2}}\right)^{2022}+\left(\overline{z_{1}} z_{2}\right)^{2022}\right|\right\rfloor=\left\lfloor\log _{3}(2)+4044\right\rfloor$
$=4044$.

2. Annually cubic

Let $\alpha, \beta \in \mathbb{R}$ such that

$$
\begin{aligned}
& \alpha^{3}-3 \alpha^{2}+23 \alpha=20, \text { and } \\
& \beta^{3}-3 \beta^{2}+23 \beta=22
\end{aligned}
$$

Find $\alpha+\beta$.
Solution. We have $f(\alpha)=20$ and $f(\beta)=22$, where $f(x)=x^{3}-3 x^{2}+23 x$.
Observe that $f(x-1)$ will have no x^{2} coefficient.
Let $u=x-1$, or equivalently $x=u+1$:

$$
\begin{aligned}
f(x)=f(u+1) & =(u+1)^{3}-3(u+1)^{2}+23(u+1) \\
& =u^{3}+(3-3) u^{2}+(3-3 \cdot 2+23) u+(1-3+23) \\
& =u^{3}+20 u+21 \\
& =(x-1)^{3}+20(x-1)+21 .
\end{aligned}
$$

Let $g(x)=x^{3}+20 x$.
Since $g^{\prime}(x)=3 x^{2}+20>0$ for all $x \in \mathbb{R}, g$ is strictly increasing and hence one-to-one. Therefore, α and β are uniquely determined by

$$
\begin{aligned}
& g(\alpha-1)=f(\alpha)-21=-1 \text { and } \\
& g(\beta-1)=f(\beta)-21=1 .
\end{aligned}
$$

Moreover, g is an odd function. Hence,

$$
\begin{aligned}
\alpha-1 & =-(\beta-1) \\
\therefore \alpha+\beta & =2 .
\end{aligned}
$$

3. Parabolic sum

For each $n \in \mathbb{N}$, the parabola

$$
y=\left(n^{2}+n\right) x^{2}+(2 n+1) x+1,
$$

cuts the x-axis at α_{n} and β_{n}.
Find $\sum_{n=1}^{2022} \alpha_{n} \beta_{n}$.
Solution. Equivalently, α_{n} and β_{n} are roots of

$$
\begin{equation*}
\left(n^{2}+n\right) x^{2}+(2 n+1) x+1=0 . \tag{*}
\end{equation*}
$$

First we observe that the discriminant of $(*)$,

$$
\begin{aligned}
\Delta & =(2 n+1)^{2}-4\left(n^{2}+n\right) \\
& =1>0
\end{aligned}
$$

By Viète's Theorem ${ }^{1}$,

$$
\alpha_{n} \beta_{n}=\frac{1}{n^{2}+n} .
$$

[^0]So we are required to find

$$
\begin{aligned}
\sum_{n=1}^{2022} \alpha_{n} \beta_{n} & =\sum_{n=1}^{2022} \frac{1}{n^{2}+n} \\
& =\sum_{n=1}^{2022} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{2022} \frac{1}{n}-\frac{1}{n+1} \\
& =1-\frac{1}{2}+\frac{1}{2}-\cdots-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2023} \\
& =\frac{2022}{2023}
\end{aligned}
$$

4. Alternating sums

Let the decimal digit representation of $N \in \mathbb{N}$ be $\overline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$, i.e.

$$
N=a_{0}+10 a_{1}+10^{2} a_{2}+\cdots+10^{n} a_{n}
$$

and let $A(N)$ be the alternating sum of digits of N. i.e.

$$
A(N)=a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}
$$

Also, we define $A(0)=0$, and for $N<0, A(N)=-A(-N)$ (what one gets by thinking of all the digits of N as negative).
Suppose $\alpha=2022^{2022}, A(\alpha)=\beta$, and $A(\beta)=\gamma$.
Knowing that $A(\gamma)$ is negative, what is $A(\gamma)$?
Solution. First observe that since $\alpha=2022^{2022}<\left(10^{4}\right)^{2022}, \alpha$ has at most 8088 digits. Hence

$$
\begin{gathered}
-36396=A(\underbrace{9090 \ldots 9090}_{4044 \text { copies of } 90}) \leqslant A(\alpha) \leqslant A(\underbrace{0909 \ldots 0909}_{4044 \text { copies of } 09})=36396 \\
-21=A(-30909) \leqslant A(\beta) \leqslant A(30909)=21 \\
-9=A(-09) \leqslant A(\gamma) \leqslant A(09)=9
\end{gathered}
$$

Now, since $N \equiv A(N)(\bmod 11)$,

$$
\begin{aligned}
\alpha & \equiv A(\alpha) \quad(\bmod 11) \\
& \equiv A(\beta) \quad(\bmod 11) \\
& \equiv A(\gamma) \quad(\bmod 11)
\end{aligned}
$$

but

$$
\begin{aligned}
\alpha & =2022^{2022} \\
& \equiv(A(2022))^{2022} \quad(\bmod 11) \\
& \equiv\left((-2)^{10}\right)^{202} \cdot(-2)^{2} \quad(\bmod 11) \\
& \equiv 1 \cdot 4 \quad(\bmod 11), \text { by Fermat's Little Theorem. }
\end{aligned}
$$

Therefore, $A(\gamma)=4$ or -7 , so that knowing that $A(\gamma)$ is negative, we have $A(\gamma)=-7$.

5. Perimetric area

The diameter of the circumcircle of acute triangle $A B C$ is 4 , and its area is S, with X, Y, Z points on sides $B C, C A, A B$ respectively.
Prove that $A X, B Y, C Z$ are altitudes of $\triangle A B C$ if and only if $S=Z Y+Y X+X Z$.
Solution. Let $K=\operatorname{circumcircle}(A B C), O=\operatorname{circumcentre}(A B C)$, and let P be a point on the tangent to K through A.
(\Longrightarrow) Assume $A X, B Y, C Z$ are altitudes of $\triangle A B C$. Then,

$\angle B Z C$	$=90^{\circ}$			
	$=\angle B Y C$	\quad	$\therefore B Z Y C$ is cyclic,	(equal angles on common chord $B C$)
:---	:---			
(exterior angle of cyclic				
$B Z Y C$ equals interior				
opposite angle)				

Similarly,

$$
\begin{aligned}
|O Y C X| & =Y X, \text { and } \\
|O X B Z| & =X Z \\
\therefore S & =|O Z A Y|+|O Y C X|+|O X B Z| \\
& =Z Y+Y X+X Z .
\end{aligned}
$$

For the converse direction of the proof, we need the following lemma.
Lemma. For quadrilateral $T U V W$, with diagonals $d_{1}, d_{2}, \quad|T U V W| \leqslant \frac{1}{2} d_{1} d_{2}$.
Moreover, equality occurs if and only if $T V \perp U W$.
Proof. Let $d_{1}=T V, d_{2}=U W$. Drop altitudes h_{1}, h_{2} of triangles $T U V, T W V$ from U, W to $T V$, respectively. Then

$$
\begin{aligned}
|T U V W| & =|T U V|+|T W V| \\
& =\frac{1}{2} d_{1} h_{1}+\frac{1}{2} d_{1} h_{2} \\
& =\frac{1}{2} d_{1}\left(h_{1}+h_{2}\right) \\
& \leqslant \frac{1}{2} d_{1} d_{2}
\end{aligned}
$$

Moreover, for equality to occur altitudes h_{1}, h_{2} must coincide with diagonal d_{2}, which occurs if and only if $T V \perp U W$.
(\Longleftarrow) Now we assume $S=Z Y+Y X+X Z$. Then

$$
\begin{align*}
|O Z A Y| & \leqslant \frac{1}{2} O A \cdot Z Y, \quad \text { (by Lemma above) } \\
& =Z Y \tag{1}\\
|O Y C X| & \leqslant Y X \tag{2}\\
|O X B Z| & \leqslant X Z \tag{3}
\end{align*}
$$

$\therefore Z Y+Y X+X Z=S$
$=|O Z A Y|+|O Y C X|+|O X B Z|$
$\leqslant Z Y+Y X+Z Z$.
\therefore (1), (2), (3) are equalities

$$
\begin{aligned}
\therefore Z Y & \perp O A, & & \text { (by Lemma above) } \\
& O A \perp P A & & \\
\therefore Z Y & \| P A & & \text { (alternate angles) } \\
\therefore \angle A Z Y & =\angle P A Z, & & \text { (same angle) } \\
& =\angle P A B, & & \text { by Tangent-Chord Thm } \\
& =\angle A C B, & & \text { (same angle) }
\end{aligned}
$$

$\therefore B Z Y C$ is cyclic
Similarly, $A Y X B, C X Z A$ are cyclic

$$
\begin{aligned}
& \therefore \angle A Y B=180^{\circ}-(\angle A B Y+\angle B A Y), \\
&=180^{\circ}-(\angle Z B Y+\angle C A Z), \\
&=180^{\circ}-(\angle Z C Y+\angle C A Z), \\
&=180^{\circ}-(\angle Z C A+\angle C A Z), \\
&=\angle A Z C, \\
& \angle A Y B+\angle A Z C=\angle A X B+\angle A X C, \\
&=180^{\circ}, \\
& \therefore \angle A Y B=\angle A Z C=90^{\circ} \\
& \therefore B Y, C Z \text { are altitudes of } \triangle A B C \\
& \text { Similarly, } A X \text { is an altitude of } \triangle A B C .
\end{aligned}
$$

[^0]: ${ }^{1}$ Viète's Theorem states: for a monic quadratic $x^{2}+b x+c=0$ with roots $\alpha, \beta, b=-(\alpha+\beta)$ and $c=\alpha \beta$.

