The University of Western Australia SCHOOL OF MATHEMATICS AND STATISTICS

BLAKERS MATHEMATICS COMPETITION

1997 Problems

- **1.** L and M are lines in \mathbb{R}^3 such that L lies in a plane perpendicular to M. Show that M lies in a plane perpendicular to L.
- **2.** A partition of a set S is a collection of disjoint subsets whose union is S. For a partition π of $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π' of S, there are two distinct numbers x and y such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$.
- **3.** Find the equation of the line tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

in the first quadrant that forms with the coordinate axes the triangle of smallest possible area.

- 4. Let f be a continuous real function on \mathbb{R} and let I be the identity map on \mathbb{R} . Show that:
 - (a) If $f \circ f = I$, then f = I or f is decreasing.
 - (b) If $f \circ f \circ f = I$ then f = I.
 - (c) If $f \circ f \circ f \circ f = I$ then $f \circ f = I$.
- 5. Elastic thread is to be wound on to a cylindrical bobbin which is 2 cm in diameter and 5 cm long, so that the curved surface is covered by one thickness of thread. The thread is originally 15 m long and 0.02 cm in diameter with a circular cross-section, but it needs to be stretched in order to do this job. When stretched, the thickness of the thread decreases but its cross-section remains circular and its total volume remains constant. Find the length of the stretched thread.
- *6. (a) Positive integers n_1, n_2, \ldots (not necessarily distinct) are to be chosen so that their sum is 100. What is the maximum value of their product?
 - (b) What happens if the word 'integers' is replaced by 'real numbers'?

***7.** Show that every square real matrix is the product of two real symmetric matrices.

*8. Show that all solutions of the differential equation $y'' + e^x y = 0$ are bounded as $x \to \infty$.

*9. Let \mathcal{F} be the set of all intervals, closed, open and half-open, in \mathbb{R} and let \mathcal{G} be the set of all closed intervals in \mathbb{R} . Let f be a real function defined on \mathbb{R} . Show that f is continuous if and only if for every $F \in \mathcal{F}$, $f(F) \in \mathcal{F}$ and for every $G \in \mathcal{G}$, $f(G) \in \mathcal{G}$. Generalise this result to \mathbb{R}^n .

***10.** Let S be a set, and for all $x, y \in S$, let $x * y \in S$ such that

- (a) x * (x * y) = y and
- (b) (y * x) * x = y.

Show that * is commutative but not necessarily associative.