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1. Matrix Squares. Let A be an n×n matrix such that A2m+1 = In for some natural number
m.

Show that A is the square of an invertible matrix.

Solution. Since A2mA = In, A is invertible, and has inverse A2m.
Hence Am+1 is invertible and (Am+1)2 = A2m+2 = A2m+1A = A.

2. Conic Tangents. Let the parabola x = y2 and the circle x2 + y2 = 1 meet at P above
the x-axis and Q below the x-axis. Tangents common to the circle and parabola meet the
parabola at X below the x-axis and Y above the x-axis.

Prove that XP and Y Q are tangent to the circle.

Solution. [By Michael Pauley, 1st year, UWA]
The coordinates of Q are (g, −√g), where

g =
√

5− 1
2

.

By similar triangles, the coordinates of Y are (c,
√
c), where c = 2 +

√
5.

The tangent to the circle at Q has slope
√
g, so passes through (c,

√
c) = Y .

Alternatively, we have P (a,
√
a) and Q(a,−

√
a), where a = (

√
5 − 1)/2. The tangent at

the point (t2, t) on the parabola has equation 2ty = x + t2 so its distance from the origin is
t2(4t2 + 1)−

1
2 . Setting this distance equal to 1 gives X = (c,−

√
c) and Y = (c,

√
c) where

c = 2 +
√

5. Hence the dot product
−−→
OP ·−−→OX = 1 and so

−−→
OP ·−−→PX =

−−→
OP · (

−−→
OX −

−−→
OP ) = 1− 1 = 0.

Thus PX is tangent to the circle and similarly, so is Y Q.

3. Who Won?

Alice: Did you hear about the penalty kick shootout between Turkey and Spain?
Bob: I heard only that Turkey shot first. What was the score? Who won?
Alice: The score was interesting. If I told you the score, you could tell me who
won.
Bob: Well, then I know who won even without knowing the score!



Who won?

[Explanation: A penalty kick shootout in soccer works as follows. There are five rounds of
the form: Team A shoots; then team B shoots. However, if at any point the score is such
that a team is guaranteed to win, the shootout ends. If they are tied after five rounds, then
additional rounds are played until there is a winner. A score is reported as m-to-n where
m > n (regardless of who shot first).

Solution. There are two ways to solve this. All the submitted solutions did it the brute
force way, showing that the only scores satisfying the conditions of the problem are 4–1 to
Turkey and 5–3 to Turkey.
More elegantly, suppose there is a sequence S1 of shots by which Spain could win. If
Turkey shot last in this sequence, it would make no difference if the winner Spain took
another shot which missed. Hence we may suppose that both sides shot the same number
of times. Therefore Turkey could have won by the same score by the sequence S2 in which
Turkey scored [missed] on shot i if and only if Spain scored [missed] on shot i in S1. Hence
Spain could not have won by a score that Turkey could not win by.
But we know that Turkey could win by a score that Spain could not win by. Therefore Turkey
won.

4. Hanging a Picture. Suppose a rectangular picture of length a and height b is suspended
by a cord of length ` attached to its two upper corners, passing over a hook in the wall.
Assume that the weight of the cord, the friction between the cord and the hook, and between
the picture and the wall are negligible.

(a) Show that there is a critical length L such that if ` > L then the picture will hang in
stable equilibrium in a horizontal position, but if ` < L then the horizontal picture,
if slightly disturbed, will slide into a stable but slanting equilibrium position with its
centre vertically below the hook.

(b) Show that at a position of tilted equilibrium, the angle at the hook between the two
pieces of cord equals the small angle between the diagonals of the picture.

(c) Find L in terms of a and b.

(d) As the cord length is varied, the equilibrium position of the picture moves relative to
the hook. Find the locus of the hook relative to the equilibrium position of the picture.
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Solution. [By combining solutions of Michael Pauley, 1st year UWA, and Daniel
Stefannelli, 2nd Year UWA]
(a) and (b) Call the top corners A and B, the hook H, and the centre of the picture O. Let
the small angle between the diagonals be θ, so the large angle is 180◦ − θ.
When the picture is not moving, the vertical through H passes through O and the tensions
in the both parts of the string are equal, so ∠AHO = ∠BHO = α, say. By the Sine Rule in
triangles AHO and BHO, sinHAO = sinHBO; so either these angles are equal, or have sum
180◦. Hence either 2α < θ and the picture is in stable equilibrium in the horizontal position,
or 2α = θ and the picture is in stable equilibrium in one of the two slanted positions.
(c) By the geometry of the configuration, for slanted equilibrium, the critical length L satisfies
L sinα = a and

sinα =
b√

a2 + b2
.

So,
L =

a

b

√
a2 + b2.

(d) In slanted equilibrium, the angle at H is constant, so as the length increases from a to L,
the hook moves relative to the picture in an arc of a circle passing through A, B and O. As
the length exceeds L, it moves up along the vertical through O.

5. Time flies. The hands of a clock have lengths 3 and 4. Find the distance between the tips
of the hands when that distance is increasing most rapidly.

Solution. Let
−→
OA be the big hand and

−−→
OB the little hand. We can think of

−→
OA as fixed

and
−−→
OB rotating at constant speed. Let v

˜
be the velocity vector of B under this assumption.

The rate of change of distance AB is the component of v
˜

in direction
−−→
AB. Since v

˜
⊥
−−→
OB

and |v
˜
| is constant, this component is maximal when ∠OBA is a right angle, i.e. distance

AB =
√

42 − 32 =
√

7.

6. House of cards. When building a house of cards, the first step is to arrange two cards in
an inverted V. How rough must the table be in order that the cards stay in place?

[Hint. Roughness is measured by the coefficient of friction, defined as follows: a contact force
between two objects may be resolved into a friction component F and a normal component
N . The coefficient of friction is a constant µ such that F = µN when one of the objects is
at the point of slipping.]

Solution.

A
θ

B B

N2

F2

W

N1

N2

F2

W

N1

Let A,B, θ as indicated in the diagram, and let a be the length of the card AB.
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By symmetry the action of each card on the other at B must be horizontal. (For if not, an
upward component would have to equal a downward component.)
Balance of forces gives: N2 = W , N1 = F2.
Balance of moments about A gives:

W · a · sin θ = N1 · 2a · cos θ

∴ F2 =
W tan θ

2
Now the Friction Law gives: F2 ≤ µN2 from which we deduce

µ ≥ 1
2 tan θ.

7. Equilateral triangle inscribed in a rectangle. On the sides BC and CD of rectangle
ABCD, points P and Q are drawn such that APQ is an equilateral trangle.

(a) Prove that Area(4AQD) + Area(4APB) = Area(4PCQ).

(b) Determine the possibilities for the ratio BC : AB.

Solution. [By Alix Nulsen, 1st year, UWA]

A B

P

CQD

Assume the triangle has side length 1, since this makes no difference to the problem or its
solution.
(a) Let ∠BAP = θ, X = Area(4APB), Y = Area(4AQD), and Z = Area(4PCQ). Then

X = 1
2 cos θ sin θ = 1

4 sin(2θ).

Similarly,

Y = 1
4 sin(π/3− 2θ) and

Z = 1
4 sin(π/3 + 2θ).

Hence

X + Y = 1
4

(
sin(2θ) + sin(π/3− 2θ)

)
= 1

4

(
sin(2θ) + sin(π/3) cos(2θ)− 1

2 sin(2θ)
)

= 1
4

(
1
2 sin(2θ) + sin(π/3) cos(2θ)

)
= 1

4 sin(π/3 + 2θ)
= 1

4 sin
(
2(π/6 + θ)

)
= Z

Hence Area(4AQD) + Area(4APB) = Area(4PCQ).
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(b) As θ varies continuously from its minimum 0 to its maximum π/6, the ratio BC/AB
varies from its maximum 1/(

√
3/2) to its minimum

√
3/2. Hence

√
3/2 ≤ BC : AB ≤ 2/

√
3.

8. A random walk. A 3 × 3 × 3 cube is divided into 27 unit cubelets. There is a passage
allowed between any pair of adjacent cubelets (i.e. those which share a common face).

A mouse is placed in one of the corner cubelets and a block of cheese in the centre cubelet.
The mouse wanders at random between adjacent cubelets looking for the cheese. On average,
how many moves will she have to make to find the cheese?

Solution. To reach the centre, the mouse will have to move from the corner to the middle of
an edge and then to the middle of a face and finally the centre. Suppose C, E and F are the
expected number of steps the mouse needs to take to reach the centre from a corner, middle
of an edge and middle of a face respectively.
Note that from a corner, the mouse must be at the middle of an edge at the next step and
hence C = 1 + E or E = C − 1. From the middle of an edge, half the time the mouse will
go back to the corner needing an additional C steps, on an average, to reach centre, while
half the time she will move to the middle of a face, needing an additional F steps on an
average. Thus we have E = 1 + 1

2(C + F ) and using the relationship between E and C we
get C = 4 + F or F = C − 4.
From the middle of a face at the next step the mouse may reach the centre one fifth of the
time while four fifths of the time she will go back to middle of an edge needing an extra E
more steps on average. Thus F = 1 + 4

5E = 1
5 + 4

5C. Substituting C − 4 for F and solving
for C, we get C = 21.
Alternatively, let p(n) be the probability of reaching centre from the middle of an edge in
n steps. Obviously, p(1) = 0 and p(2) = 1

2 ·
1
5 = 1

10 . For n > 2, in the first two moves, the
mouse either will have to go to a corner and then back to the centre of an edge (for which the
probability is 1

2) or will have to go to centre of a face and then come back to a centre of the
edge (which has a probability of 1

2 ·
4
5 = 4

10 and then reach the centre in n − 2 steps and so
we have the recursive relationship p(n) = (1

2 + 4
5)p(n− 2) = 9

10p(n− 2), from which we have
p(n) = ( 9

10)(n−2)/2 · 1
10 for even n and 0 for odd n. Thus the expected number of steps needed

to reach the centre from the middle of an edge is
∑∞

m=1 2m( 9
10)m−1 · 1

10 = 20, on comparing
the sum with the binomial expansion of (1 − p)−2 for p = 9

10 . Now add the extra step to
reach the edge from the corner, and we find the expected number is 20 + 1 = 21.

9. Infinitely many equations.

(a) For each positive integer m, let E(m) be the equation in two unknowns (x−m)−y2
m = 0,

so we have a system of equations in unknowns x, y1, y2, . . . . Show that for every m,
the first m equations E(1), E(2), . . . E(m) of this system have a real solution but the
whole system does not.

(b) For each complex number c, let E(c) be the equation in two unknowns (z−c)yc−1 = 0.
Show that every proper subset of the system has a complex solution, but the whole
system does not.
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Solution. [By Michael Pauley, 1st year, UWA]
(a) Given a finite subsystem, let ym be the first unknown that does not appear in the

subsystem. Then

x = m, y1 = (m− 1)
1
2 , y2 = (m− 2)

1
2 , . . . , ym−1 = 1

contains a solution to the finite subsystem. However, the whole system does not, because
if there were a solution with x = r, let m > r be an integer. Then there is no ym satisfying
(x−m)− y2

m = 0, a contradiction.
(b) Given a proper subsystem P , let a ∈ C be a complex number such that (z − a)ya − 1

does not appear in P . A solution of P is z = a, yc = (a − c)−1. But the entire system
has no solution, because if there were a solution with z = u ∈ C, then there is no yu such
that (z − u)yu − 1 = 0, a contradiction.

10. Squares in a sequence. Let a1 = 1 and an+1 = an + b
√
anc for n = 1, 2, . . . . Show that

an is a square if and only if n = 2k + k − 2 for some positive integer k.

Solution. We will show by induction on k that ank
= (2k−1)2 for nk = 2k + k− 2 and am is

not square for nk−1 < m < nk.
This is true for k = 1. Assume it is true for some k. By induction on i,

an+2i+1 = (2k−1 + i)2 + 2k−1 − i, for 0 ≤ i ≤ 2k−1 (1)

an+2i = (2k−1 + i− 1)2 + 2k, for 1 ≤ i ≤ 2k−1 (2)

where n = nk. For i = 2k−1, n+ 2i+ 1 = n+ 2k + 1 = nk+1 and ank+1(2k−1 + 2k−1)2 = (2k)2.
(1) and (2) show that am is not square for nk < m < nk+1.
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