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SOLUTIONS

1. Mean and Median

Consider n distinct real numbers x1, . . . , xn. What is the
minimal number n of numbers such that the mean x̄ equals the
median x̃ but the points are not symmetric about the mean?

Solution:
Without loss of generality, assume x1 < x2 < . . . < xn. For

n = 1 and n = 2 the mean and median coincide and all sets of
size 1 and 2 are symmetric about the mean.

For n = 3 the median equals x2, hence the mean equals x2

if and only if x2 − x1 = x3 − x2, i.e., the points are symmetric
about the mean.

For n = 4 assume by shifting and scaling that x2 = −1 and
x3 = 1, so the median equals 0. Then the mean equals zero if
and only if x1 = −x4, so once again the points are symmetric.

For n = 5 the set {−4,−3, 0, 2, 5} serves as a counterexample,
so n = 5.

2. Even and odd functions

A real–valued function f on an interval [a, b] is called even if
f(a + x) = f(b− x) for all x ∈ [0, b− a] and odd if
f(a + x) = −f(b− x) for all x ∈ [0, b− a].

Show that every real function on [a, b] is the sum of an even
function and an odd function. Is such a sum unique?

Solution: Let f(x) be a real–valued function on [a, b]. Then

f(x) =
f(x) + f(a + b− x)

2
+

f(x)− f(a + b− x)

2
, the first

term being even and the second odd.
This representation is unique because if f = g + h with g

even and h odd, then for all x ∈ [a, b],

f(x) = g(x) + h(x)

f(a + b− x) = g(a + b− x) + h(a + b− x)

= g(x)− h(x)

1



Hence g(x) =
f(x) + f(a + b− x)

2
and h(x) =

f(x)− f(a + b− x)

2
.

3 Five Villages in England

The following linear distances of five villages in England are:
• 30km from Ayling to Beeling
• 80km from Beeling to Ceiling
• 236km from Ceiling to Dealing
• 86km from Dealing to Ealing
• 40km from Ealing to Ayling.

What is the linear distance from Ealing to Ceiling? All dis-
tances are measured on a map.

Solution: These five villages form a closed polygon with the
special property that one edge is the sum of the other four edges:
Ceiling to Dealing = 236 = 30+80+86+40. Hence, all corners
of the polygon are on a line. The order of the cities is: Dealing,
Ealing, Ayling, Beeling and Ceiling. Hence, the distance from
Ealing to Ceiling is 40 + 30 + 80 = 150km.

4. Sphere in a Tetrahedron

Let A, B, C and D be four non-planar points in 3–space.
(a) Prove that there is a unique sphere tangent to each of the

triangles ABC, BCD, ACD and ABD.
(b) Call this sphere the insphere of the tetrahedron ABCD,

and let its radius be r. Let hA, hB, hC and hD denote
the altitudes of the tetrahedron, i.e., distances from each
vertex to the plane determined by the triangle opposite
that vertex. Prove that

1

r
=

1

hA

+
1

hB

+
1

hC

+
1

hD

Solution: (a) Consider ABCD as a hollow tetrahedron. Re-
move one triangular face and drop in a sphere small enough
so that it sits in the opposite corner touching all three faces
but does not project outside the removed face. Now expand
the sphere until it just touches the fourth face. It is then tan-
gent to all faces of the tetrahedron. This sphere is unique, for
if there is another with the same property, it cannot have the



same centre but a different radius, otherwise it would fail to
meet or project beyond the faces of the tetrahedron; if it had
a different centre, it would be closer to at least one face and
farther from at least one face and hence could not be tangent
to all faces.

(b) Let ∆XY Z denote the area of any triangle XY Z. The
volume V of the tetrahedron is the one third the area of any
face times the distance to the opposite vertex. Hence

V =
1

3
hA∆BCD =

1

3
hB∆ACD =

1

3
hC∆ABD =

1

3
hD∆ABC.

But V is also the sum of the volumes of the four tetrahedra
whose vertices are three of the given points and the centre of the
insphere, i.e., V = 1

3
r(∆BCD + ∆ACD + ∆ABD + ∆ABC).

Hence
3V

r
= ∆BCD + ∆ACD + ∆ABD + ∆ABC =

3V

(
1

hA

+
1

hB

+
1

hC

+
1

hD

)
.

Hence
1

r
=

1

hA

+
1

hB

+
1

hC

+
1

hD

5. A stable table

Legs L1, L2, L3 and L4 of a square table each have length n,
where n is a positive integer. For how many ordered 4–tuples
(k1, k2, k3, k4) of non–negative integers can we cut a piece of
length ki from the end of leg Li, i = 1, 2, 3, 4 and still have a
stable table? ( i.e. one that can be placed so that all four leg
ends touch the floor.)

Solution: Turn the table upside down so that its surface
lies in the x− y plane with corners with legs L1, L2, L3, L4 at
(1, 0), (0, 1), (−1, 0) and (0, −1) respectively. Let `i be the
length of Li after the cut, so that 0 ≤ `i ≤ n for i = 1, 2, 3, 4.

The table will be stable if and only if the four ends are co-
planar. This will happen if and only if the diagonals joining the
leg ends intersect at the mid–point of each. That is, if and only
if

(*)

(
0, 0,

`1 + `3

2

)
=

(
0, 0,

`2 + `4

2

)
.



Thus the third coordinate in each of these expressions can be
any of 0, 1

2
, 1, 3

2
, . . . , n.

For each 0 ≤ k ≤ n, let Sk be the number of integer solutions
of x + y = k, 0 ≤ x, y ≤ n. Then the number of solutions of
(∗), i.e. the number of stable tables, is N =

∑n
k=0 S2

k .
Thus

N =12 + 22 + · · ·+ n2 + (n + 1)2 + n2 + · · ·+ 12

=2
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
1

3
(n + 1)(2n2 + 4n + 3).

6. An integer quadrilateral

ABCD is a quadrilateral and P is an interior point. Lines
are drawn from each vertex to P. The side lengths of the four
non–congruent triangles are integers not greater than 20. The
angles at P are 60◦, 120◦, 90◦, 90◦ in that order. What is the
perimeter of the quadrilateral ABCD?

Solution: The right angled triangles must have sides chosen
from the triads (5, 12, 13), (5, 8, 17) and multiples of (3, 4, 5).
Since they must have one side (not a hypotenuse) in common,
the possibilities are
(i) (5, 12, 13) and (12, 16, 20)
(ii) (6, 8, 10) and(8, 15, 17)
(iii) (9, 12, 15) and (12, 16, 20)
(iv) (5, 12, 13) and (9, 12, 15)



Case (i): the quadrilateral must be as shown in Figures 1 or 2.
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In Figure 1

(1) y2 = 162 + x2 − 32x cos 60 = 256 + x2 − 16x

(2) z2 = 52 + x2 − 10x cos 120 = 25 + x2 + 5x

From (1), x = 8±
√

y2 − 192
For x real, y2 > 192 implies y ≥ 14. Testing y = 14, 15, . . . , 20

shows the only values giving integer values for x are y = 14, x =
6 or 10, y = 16, x = 0 or 16, and y = 19, x = −5 or 21.

Of the acceptable values for x, only x = 16 yields an integer
z = 19.

Hence the perimeter is 13 + 20 + 16 + 19 = 68.
A similar analysis for Figure 2 yields x = 5, y = 19, z = 5

and the perimeter is 57.
Analysis of cases (ii), (iii) and (iv) leads to degenerate tri-

angles (side lengths ≤ 0) or non–integral side lengths.
Hence the perimeter of the quadrilateral is 57 or 68.



7. A door-stop wedge

Obtain a sufficient condition on the angle of a door-stop
wedge, in terms of friction characteristics between the wedge,
the floor and the door, for the wedge to hold the door in place.

����������������

α

Consider the contact forces between the door and the wedge
and between the wedge and the floor. It should be noted that
the force exerted by the door on the wedge is usually quite large
compared with the weight of the wedge.

Solution:
Figure 1 shows the forces acting on the wedge. The action

of the door on the wedge tends to move the wedge to the right,
opposed by the friction force due to the floor.
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Resolving horizontally and vertically we obtain the equations
of static equilibrium:

P cos α−Q sin α = N −Mg(i)

P sin α + Q cos α = F(ii)



Let µF = tan φ = coefficient of friction between the wedge
and the floor.

Let µD = tan θ = coefficient of friction between the wedge
and the door.

Then F < N tan φ and Q < P tan θ are conditions for equi-
librium. The regions in the NF -plane and PQ-plane given by
these inequalities are shown in Figure 2(a), (b).

We need to relate together these two regions which indicate
where equilibrium is possible.

Solving equations (i) and (ii) for P and Q or resolving in the
directions of P and Q gives

P = (N −Mg) cos α + F sin α(iii)

Q = −(N −Mg) sin α + F cos α(iv)

These equations show that with an origin shift, the PQ-axes
are rotated through α in the NF -plane.
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Figure 2(a)

(For example check that when N = Mg, F > 0 then P >
0, Q > 0)

Figure 3(a), (b) shows the orientation of the axes together
with the regions which are the intersections of the angles of
Figure 2(a), (b).

In Figure 3(a) a large value of P might not lie in the shaded
region. This means that equilibrium under a large value of P
is not possible i.e. the wedge would move.

In Figure 3(b) we see that any value of P is possible in an
equilibrium situation i.e. the door-stop would be effective.

Hence a sufficient for an effective door-stop wedge is α < φ.
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8. Bug in a Wineglass

A wineglass has internal shape obtained by rotating the func-
tion y = x2 about the y–axis, for x = 0 to x = D. You pour the
wine in at a constant rate of λ l/sec. On the inside of the glass
sits a bug who is fairly unhappy about getting her feet wet, so
begins crawling upward along the curve y = x2 as soon as the
liquid reaches her. How fast does she have to crawl to outrun
the rising tide of liquid?

Solution: The volume of wine in the glass as a function of
time t is V (t) = λt. The volume when the liquid is at height h

is φ(h) =
∫ h

0
πydy = πh2/2.

Therefore the height of liquid at time t is h(t) =
√

2λt/π.
The bug is crawling along the curve x =

√
y. Assuming she

starts from height h0 > 0, the distance she covers in time t is

L(t) =

∫ h(t)

h0

√
1 + (

√
y)′)2dy =

∫ h(t)

h0

√
1 +

1

4y
dy.

Her speed is dL/dt = (1 + 1/4h)1/2(dh/dt).
From λt = πh2/2 we obtain dh/dt = λ/(πh). hence the

minimum speed required to keep pace with the rising liquid is

dL

dt
=

(
1 +

1

4h

)1/2
λ

πh
=

(
1 +

1

4

√
π

2λt

)1/2(
λ

2πt

)1/2



9. A game of patience

A standard deck of 52 cards is arranged at random face up
in 4 rows and 13 columns. Show that by finitely many swaps of
two cards of the same value (e.g., 7♣ and 7♥) the cards can be
re–arranged so that each column contains one club, one heart,
one spade and one diamond.

Solution: Denote the cards by (x, i), where x is the suit and
i the value. Suppose that some suit y is missing from the first
column. Then some suit x occurs more than once in the first
column. As long as x occurs more than once, switch (x, i) with
(y, i), which must occur in another column. Do this until the 4
suits occur in column 1.

Now suppose that all suits occur in the first k − 1 columns,
but some suit y is missing from column k. Some suit x occurs
more than once in column k. In at most k moves, we swap some
(x, i) in column k for some (y, j) without eliminating any suits
from the first k − 1 columns.

Define a directed graph with 13 edges whose vertices are the
columns as follows. For each value i draw an arrow from the
column containing (x, i) to the column containing (y, i). Each
of the first k columns (vertices) has one head and one tail and
column k has at least two tails and no head, Hence there is a
path from column k which may go through some of the first k
columns, but eventually reaches a column later than k. Swap
all the cards at heads and tails of arrows on this path, starting
at column k. This will introduce suit y to column k but will
not change the suits in columns up to k−1. Doing this at most
3 times introduces all suits to column k.

By induction, this works for columns 1 to 12, and the last
column comes for free.

10. Square in a cube

What is the area of the largest square contained in the unit
cube?

Solution: For convenience in calculation, first consider a
cube C centred at the origin with vertices at (±1, ±1, ±1). The
largest square contained in C has orthogonal diagonals centred
at the origin with endpoints on the faces of C, so it suffices to
find the longest such line segments.



Let A be a line segment with endpoints (1/2, 1, 1) and (−1/2,−1,−1)
and B a line segment with endpoints (1, 1/2,−1) and (−1,−1/2, 1).
A and B are orthogonal and have length 3.

Suppose there are orthogonal line segments X and Y in C
passing through the origin of length > 3. By symmetry, we can
assume one endpoint of X is (1, y, z) with 0 ≤ y ≤ z ≤ 1. Since
the length of X > 3, it follows that y > 1/2. Three possible
endpoints of Y are P = (−1, u, v), (u,−1, v) or (u, v,−1) with
|u|, |v| ≤ 1.

Suppose P = (−1.u.v). Since Y is orthogonal to X, yu+zv =
1. In the (u, v)-plane we are considering points on the line Y
within the square |u|, |v| ≤ 1 and we want to maximise u2 +v2.
This maximum occurs on the boundary of the square, so at the
points u = 1, v = (1 − y)/z and u = (1 − z)/y, v = 1. Since
0 ≤ y ≤ z ≤ 1, 1 ≥ (1− y)/z ≥ (1− z)/y ≥ 0, hence we have

|Y |2 = 4((1 + u2 + v2) ≤ 4

(
2 +

(
1− y

z

)2
)

If |Y | > 3, this yields (1− y)/z > 1/2 and hence y < 1− z/2.
Since |X| > 3, y2 + z2 > 5/4 and hence(

1− z

2

)2

+ z2 > y2 + z2 >
5

4
There is no solution to this inequality with 0 ≤ z ≤ 1. Hence 3
is the maximum length of |X| and |Y |

A similar calculation works for the other two possible values
of P .

Now return to the original problem by halving all lengths.
The diagonal of the largest square in the cube is 3/2 so its area
is 9/8.


