

Blakers Mathematics Competition 2023

Open to first to third year students of any Western Australian university, with prizes sponsored by the UWA Mathematics Union.

Note. Our convention is that $\mathbb{N}=\{1,2, \ldots\}$ (the positive integers).

2023 Problems with Solutions

1. Quad warm-up exercise

Find the area of the quadilateral of largest area with sides $4,16,17,23$.
Solution. First we may suppose that the sides of lengths 4 and 23 are adjoining in the quadrilateral of largest area, since if they are not, we can cut the quadilateral along a diagonal and turn over one of the triangles obtained.
Now, since a triangle with sides a, b and included angle θ has area

$$
\frac{1}{2} a b \sin \theta \leqslant \frac{1}{2} a b
$$

with the maximum value achieved when $\theta=90^{\circ}$, the quadrilateral's area is bounded above by,

$$
\frac{1}{2} \cdot 4 \cdot 23+\frac{1}{2} \cdot 16 \cdot 17=182
$$

and this is achievable since

$$
4^{2}+23^{2}=16^{2}+17^{2}
$$

shows that the right triangle with legs 4 and 23 , and the right triangle with legs 16 and 17 can be joined along their hypotenuses to form a quadrilateral.
Thus, the quadilateral of largest area with sides $4,16,17,23$, has area: 182 .

2. Geometrically aligned

Let X, Y be points on sides $L M, M K$ of acute triangle $K L M$, respectively, and let H be the orthocentre of $\triangle K L M$.

Prove that the points of intersection of the circles with diameters $K X$ and $L Y$, and H are collinear.

Solution. Let Γ^{\prime} and $\Gamma^{\prime \prime}$ be the circles with diameters $K X$ and $L Y$, respectively, and let P, Q be the points at which Γ^{\prime} and $\Gamma^{\prime \prime}$ intersect.
Let D, E be the feet of the altitudes of $\triangle K L M$, dropped from K, L respectively. Then

$$
\begin{aligned}
\angle K D L & =90^{\circ} \\
& =\angle K E L, \text { i.e. angles at } D, E \text { on } K L \text { are equal }
\end{aligned}
$$

$\therefore K L D E$ is cyclic.

Let Γ be the circle through points K, L, D, E.
Let $Q^{\prime}, Q^{\prime \prime}$ be the points (other than P) where $P H$ again meets circles $\Gamma^{\prime}, \Gamma^{\prime \prime}$, respectively.

Since Q^{\prime} on Γ^{\prime} and $Q^{\prime \prime}$ on $\Gamma^{\prime \prime}$ are the same point, they coincide with the point Q. Therefore, P, H, Q are collinear.

3. Cyclic divisibility

Let $x, y, z \in \mathbb{N}$ such that x divides y^{4}, y divides z^{4}, and z divides x^{4}.
Prove $x y z$ divides $(x+y+z)^{23}$.
Solution. It's convenient to use the notation "|" for "divides".
Expanding $(x+y+z)^{23}$ we get terms of the form $x^{k} y^{\ell} z^{m}$.
We are done if we can show $x y z \mid x^{k} y^{\ell} z^{m}$, for the various non-negative integer possibilities of k, ℓ, m such that $k+\ell+m=23$.
Due to the cyclic nature of the given divisibilities of x, y, z, we need only consider the following cases.
Case 1: $k, \ell, m \geqslant 1$. Then $x y z \mid x^{k} y^{\ell} z^{m}$, trivially.
Case 2: One of k, ℓ, m is 0 , and the others are non-zero.
Without loss of generality, $m=0$.
First suppose $k \geqslant 5$. Then $x^{k} y^{\ell}=x^{k-4} y^{\ell} x^{4}$ with

$$
x\left|x^{k-4}, y\right| y^{\ell}, z \mid x^{4}
$$

so that $x y z \mid x^{k} y^{\ell}$, in this case.
Now consider the remaining subcase: $1 \leqslant k \leqslant 4$. Then $\ell \geqslant 19>16$, so that
$x^{k} y^{\ell}=x^{k} y^{\ell-16} y^{16}$ with

$$
x\left|x^{k}, y\right| y^{\ell-16}, z\left|x^{4}\right|\left(y^{4}\right)^{4}=y^{16}
$$

so that $x y z \mid x^{k} y^{\ell}$, in this case, also.
Case 3: Two of k, ℓ, m are 0 . Without loss of generality $\ell=m=0$, leaving $k=23$.
Then $x^{23}=x^{3} x^{16} x^{4}$ with

$$
x\left|x^{3}, y\right| z^{4}\left|\left(x^{4}\right)^{4}=x^{16}, z\right| x^{4}
$$

and hence $x y z \mid x^{23}$.
Therefore, $x y z$ divides $(x+y+z)^{23}$.

4. Squared circle?

Is it possible to place 2023 consecutive natural numbers around a circle so that the product of each adjacent pair is a perfect square?

Solution. The answer is: No.
Let pop 2 be the parity of the power of 2 in the prime decomposition of a number, e.g. since $24=2^{3} \cdot 3$, the pop2 of 24 is odd, and for $12=2^{2} \cdot 3,60=3 \cdot 2^{2} \cdot 5$ and any odd number, the pop2 is even. Observe that if $a b=c^{2}$ then the pop2 of c^{2} is even, and necessarily the pop2 of a and b are the same (i.e. both odd or both even).
Suppose, for a contradiction (k), it is possible to place the 2023 consecutive numbers such that the product of each adjacent pair is a square.
Start with an odd number x among the consecutive numbers. Then pop2 of x is even. So necessarily, the pop2 of the neighbour of x (to right, say) must be even.
Continuing in this way we see every one of the consecutive numbers must have even pop2.
But there are numbers among the consecutive numbers that are 2 modulo 4 , whose pop 2 is odd 2 .
So, in fact, it's not possible for 2023 consecutive numbers to be arranged around a circle, such that the product of each neighbouring pair is a square.

5. Nonnegatively polynomial

Suppose $p(x)$ is a polynomial over \mathbb{R} such that

$$
p(x)-p^{\prime}(x)-p^{\prime \prime}(x)+p^{\prime \prime \prime}(x) \geqslant 0, \text { for all } x \in \mathbb{R} .
$$

Prove $p(x) \geqslant 0$ for all $x \in \mathbb{R}$.
Solution. First we prove a lemma.
Lemma. If for some constant $k \in \mathbb{R}, p(x)+k p^{\prime}(x) \geqslant 0 \forall x \in \mathbb{R}$, then $p(x) \geqslant 0 \forall x \in \mathbb{R}$.
Proof. Assume for some $k \in \mathbb{R}$,

$$
\begin{equation*}
p(x)+k p^{\prime}(x) \geqslant 0, \tag{*}
\end{equation*}
$$

for all $x \in \mathbb{R}$.
Since the degree of $k p^{\prime}(x)$ is one less than the degree of $p(x)$, the behaviour of $p(x)+k p^{\prime}(x)$ is dominated by the leading term of $p(x)$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. Thus, for ($*$) to be satisfied, for all real x, it is necessary that $p(x)$ be of even degree and have positive leading coefficient. Hence, $p(x)$ has a global minimum a, and since polynomials are smooth, $p^{\prime}(a)=0$. Now, since $(*)$ is satisfied for all $x \in \mathbb{R}$, in particular, it is satisfied at a, i.e.

$$
\begin{aligned}
0 & \leqslant p(a)+k p^{\prime}(a) \\
& =p(a) .
\end{aligned}
$$

But $p(a)$ is the global minimum of $p(x)$. Hence, for all $x \in \mathbb{R}$,

$$
\begin{aligned}
p(x) & \geqslant p(a) \\
& \geqslant 0,
\end{aligned}
$$

and hence the result follows.

Applying the lemma to $q(x)=p(x)-2 p^{\prime}(x)+p^{\prime \prime}(x)$ with $k=1$, we have $q(x) \geqslant 0 \forall x \in \mathbb{R}$, since

$$
\begin{aligned}
q(x)+q^{\prime}(x) & =\left(p(x)-2 p^{\prime}(x)+p^{\prime \prime}(x)\right)+\left(p^{\prime}(x)-2 p^{\prime \prime}(x)+p^{\prime \prime \prime}(x)\right) \\
& =p(x)-p^{\prime}(x)-p^{\prime \prime}(x)+p^{\prime \prime \prime}(x) \\
& \geqslant 0 \text { (given). }
\end{aligned}
$$

Now, applying the lemma again, to $p(x)-p^{\prime}(x)$ with $k=-1$, we have $p(x)-p^{\prime}(x) \geqslant 0 \forall x \in \mathbb{R}$, since

$$
\begin{aligned}
\left(p(x)-p^{\prime}(x)\right)-\left(p(x)-p^{\prime}(x)\right)^{\prime} & =p(x)-2 p^{\prime}(x)+p^{\prime \prime}(x) \\
& \geqslant 0 .
\end{aligned}
$$

Applying the lemma a third time to $p(x)$ with $k=-1$, finally delivers the required property of $p(x)$.

