

BLAKERS MATHEMATICS COMPETITION 2023

Open to first to third year students of any Western Australian university, with prizes sponsored by the UWA Mathematics Union.

Note. Our convention is that  $\mathbb{N} = \{1, 2, ...\}$  (the positive integers).

# 2023 Problems with Solutions

#### 1. Quad warm-up exercise

Find the area of the quadilateral of largest area with sides 4, 16, 17, 23.

**Solution.** First we may suppose that the sides of lengths 4 and 23 are adjoining in the quadrilateral of largest area, since if they are not, we can cut the quadilateral along a diagonal and turn over one of the triangles obtained.

Now, since a triangle with sides a, b and included angle  $\theta$  has area

$$\frac{1}{2}ab\sin\theta \leqslant \frac{1}{2}ab,$$

with the maximum value achieved when  $\theta = 90^{\circ}$ , the quadrilateral's area is bounded above by,

$$\frac{1}{2} \cdot 4 \cdot 23 + \frac{1}{2} \cdot 16 \cdot 17 = 182,$$

and this is achievable since

$$4^2 + 23^2 = 16^2 + 17^2$$

shows that the right triangle with legs 4 and 23, and the right triangle with legs 16 and 17 can be joined along their hypotenuses to form a quadrilateral.

Thus, the quadilateral of largest area with sides 4, 16, 17, 23, has area: 182.

#### 2. Geometrically aligned

Let X, Y be points on sides LM, MK of acute triangle KLM, respectively, and let H be the orthocentre of  $\Delta KLM$ .

Prove that the points of intersection of the circles with diameters KX and LY, and H are collinear.

**Solution.** Let  $\Gamma'$  and  $\Gamma''$  be the circles with diameters KX and LY, respectively, and let P, Q be the points at which  $\Gamma'$  and  $\Gamma''$  intersect.

Let D, E be the feet of the altitudes of  $\triangle KLM$ , dropped from K, L respectively. Then

$$\angle KDL = 90^{\circ}$$
  
=  $\angle KEL$ , i.e. angles at  $D, E$  on  $KL$  are equal  
 $\therefore KLDE$  is cyclic.

Let  $\Gamma$  be the circle through points K, L, D, E. Let Q', Q'' be the points (other than P) where PH again meets circles  $\Gamma', \Gamma''$ , respectively.



Since Q' on  $\Gamma'$  and Q'' on  $\Gamma''$  are the same point, they coincide with the point Q. Therefore, P, H, Q are collinear.

# 3. Cyclic divisibility

Let  $x, y, z \in \mathbb{N}$  such that x divides  $y^4$ , y divides  $z^4$ , and z divides  $x^4$ . Prove xyz divides  $(x + y + z)^{23}$ .

**Solution.** It's convenient to use the notation "|" for "divides".

Expanding  $(x + y + z)^{23}$  we get terms of the form  $x^k y^{\ell} z^m$ .

We are done if we can show  $xyz | x^k y^{\ell} z^m$ , for the various non-negative integer possibilities of  $k, \ell, m$  such that  $k + \ell + m = 23$ .

Due to the cyclic nature of the given divisibilities of x, y, z, we need only consider the following cases.

Case 1:  $k, \ell, m \ge 1$ . Then  $xyz \mid x^k y^\ell z^m$ , trivially.

Case 2: One of  $k, \ell, m$  is 0, and the others are non-zero.

Without loss of generality, m = 0. First suppose  $k \ge 5$ . Then  $x^k y^\ell = x^{k-4} y^\ell x^4$  with  $x \mid x^{k-4}, y \mid y^\ell, z \mid x^4,$ 

so that  $xyz \mid x^k y^\ell$ , in this case.

Now consider the remaining subcase:  $1\leqslant k\leqslant 4$ . Then  $\ell\geqslant 19>16$ , so that  $x^ky^\ell=x^ky^{\ell-16}y^{16}$  with

$$x | x^k, y | y^{\ell-16}, z | x^4 | (y^4)^4 = y^{16}$$

so that  $xyz | x^k y^\ell$ , in this case, also.

Case 3: Two of  $k, \ell, m$  are 0. Without loss of generality  $\ell = m = 0$ , leaving k = 23. Then  $x^{23} = x^3 x^{16} x^4$  with

$$x | x^3, y | z^4 | (x^4)^4 = x^{16}, z | x^4,$$

and hence  $xyz \mid x^{23}$ .

Therefore, xyz divides  $(x + y + z)^{23}$ .

# 4. Squared circle?

Is it possible to place 2023 consecutive natural numbers around a circle so that the product of each adjacent pair is a perfect square?

### Solution. The answer is: No.

Let pop2 be the parity of the power of 2 in the prime decomposition of a number, e.g. since  $24 = 2^3 \cdot 3$ , the pop2 of 24 is odd, and for  $12 = 2^2 \cdot 3$ ,  $60 = 3 \cdot 2^2 \cdot 5$  and any odd number, the pop2 is even. Observe that if  $ab = c^2$  then the pop2 of  $c^2$  is even, and necessarily the pop2 of a and b are the same (i.e. both odd or both even).

Suppose, for a contradiction  $(\cancel{z})$ , it is possible to place the 2023 consecutive numbers such that the product of each adjacent pair is a square.

Start with an odd number x among the consecutive numbers. Then pop2 of x is even. So necessarily, the pop2 of the neighbour of x (to right, say) must be even.

Continuing in this way we see every one of the consecutive numbers must have even pop2. But there are numbers among the consecutive numbers that are 2 modulo 4, whose pop2 is

So, in fact, it's not possible for 2023 consecutive numbers to be arranged around a circle, such that the product of each neighbouring pair is a square.

#### 5. Nonnegatively polynomial

odd4.

Suppose p(x) is a polynomial over  $\mathbb{R}$  such that

$$p(x) - p'(x) - p''(x) + p'''(x) \ge 0$$
, for all  $x \in \mathbb{R}$ .

Prove  $p(x) \ge 0$  for all  $x \in \mathbb{R}$ .

Solution. First we prove a lemma.

**Lemma.** If for some constant  $k \in \mathbb{R}$ ,  $p(x) + kp'(x) \ge 0 \ \forall x \in \mathbb{R}$ , then  $p(x) \ge 0 \ \forall x \in \mathbb{R}$ .

**Proof.** Assume for some  $k \in \mathbb{R}$ ,

$$p(x) + kp'(x) \ge 0, \tag{(*)}$$

for all  $x \in \mathbb{R}$ .

Since the degree of kp'(x) is one less than the degree of p(x), the behaviour of p(x) + kp'(x) is dominated by the leading term of p(x) as  $x \to \infty$  and as  $x \to -\infty$ . Thus, for (\*) to be satisfied, for all real x, it is necessary that p(x) be of even degree and have positive leading coefficient. Hence, p(x) has a global minimum a, and since polynomials are smooth, p'(a) = 0. Now, since (\*) is satisfied for all  $x \in \mathbb{R}$ , in particular, it is satisfied at a, i.e.

$$0 \le p(a) + kp'(a)$$
$$= p(a).$$

But p(a) is the global minimum of p(x). Hence, for all  $x \in \mathbb{R}$ ,

$$p(x) \ge p(a)$$
$$\ge 0,$$

and hence the result follows.

Applying the lemma to q(x) = p(x) - 2p'(x) + p''(x) with k = 1, we have  $q(x) \ge 0 \ \forall x \in \mathbb{R}$ , since

$$q(x) + q'(x) = (p(x) - 2p'(x) + p''(x)) + (p'(x) - 2p''(x) + p'''(x))$$
  
=  $p(x) - p'(x) - p''(x) + p'''(x)$   
 $\ge 0$  (given).

Now, applying the lemma again, to p(x) - p'(x) with k = -1, we have  $p(x) - p'(x) \ge 0 \ \forall x \in \mathbb{R}$ , since

$$(p(x) - p'(x)) - (p(x) - p'(x))' = p(x) - 2p'(x) + p''(x) \ge 0.$$

Applying the lemma a third time to p(x) with k = -1, finally delivers the required property of p(x).